伺服超声波焊接机在使用时,时间过长会造成过度焊接而产生大量的飞边与从而导致气密不良,必须注意。对于结晶性塑料,若温度在熔点以下,连接部分就会被凝固,通常加压时间保持在0.1-0.2秒之间。伺服超声波焊接机可以对焊接过程中焊接速度、焊接压力、焊机距离和位置等进行准确控制,焊接结果一致性好;在焊接开始阶段,当一圈焊接筋开始熔化后,机头开始下行,避免导能筋破坏以及虚焊;在焊接过程中,当阻力加大,焊接速度降低,确保焊筋适度熔化。伺服超声波焊接机在保压阶段可以实现动态和静态保压,确保塑料在设定的压力下,在紧密的状态下进行冷却凝固,优化焊接强度和气密性。安装伺服超声波焊接机时,要将焊头的齿对准底模,并调整好水平,然后锁紧套筒,并调整好焊接间隙。电动伺服超声波焊接机多少钱
在使用伺服超声波焊接机时,由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。当超声波停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料强度。超声波塑料焊接的好坏取决于换能器焊头的振幅,所加压力及焊接时间等三个因素,焊接时间和焊头压力是可以调节的,振幅由换能器和变幅杆决定。这三个量相互作用有个适宜值,能量超过适宜值时,塑料的熔解量就大,焊接物易变形;若能量小,则不易焊牢,所加的压力也不能太大。这个较佳压力是焊接部分的边长与边缘每1毫米的较佳压力之积。济南大功率伺服超声波焊接机超声波焊接机形成接头所需电能少,只为电阻焊的5%;焊件变形小。
超声波焊接机焊接所需的热量取决于材料类型、焊缝设计和设备规格。控制热量的传统方法是通过时间模式来焊接,即焊接一定时间,例如0.2-1s(一般小于1s)。然而,如今的超声波焊接设备,往往还可以设置并监控焊接距离、功率和能量。在经过适当培训的操作员,也可以根据实际情况和不同材料进行参数调整,从而得到一致的焊接结果。这也很大提高了焊接的灵活性和可靠性。超声波焊接技术因为其经济性、可靠性、易于自动化集成的优点,是塑料焊接领域一种常用技术。与传统热源直接接触塑料产生热量的方式不同,超声波焊接是通过摩擦产生热量。
伺服超声波焊接机包括机架,分度盘,焊接机主体,流水线接料机构,机架侧边设有直线伺服模组,焊接机主体侧面与直线伺服模组连接,分度盘设于焊接机主体正下方,分度盘上表面设有数个送料机构,送料机构包括伺服电机,仿形模座,仿形模座内部安装有推出气缸,气动吸盘,气动吸盘设于推出气缸的伸缩杆头部,分度盘的中心位置设为镂空部,接料机构包括升降气缸以及接料板,接料板与升降气缸的伸缩杆固定连接,接料机构的另一侧设有侧推机构,侧推机构包括侧推气缸,以及与侧推气缸连接的推板,能够向焊接机主体的位置自动送料,还能对焊接结束后的产品进行卸料回收,从而提高了对产品的焊接效率。调整超声波发生器和超声波转换器系统的超声波前,必须将超声波模具和二次拉杆锁好。
超声波焊接头设计:凹凸插接式界面,待焊材料设计成带有三角形凸缘的凹凸形式,两焊件之间应留有间隙,凸形焊件壁应有一定的斜度,以便塑料件容易拼合,同时让熔融的材料有流动的空间,不致溢出外面。在超声波焊的接头设计中应注意控制焊件的谐振问题。当上声极向焊件引入超声振动时,如果焊件沿振动方向的自振频率与引入的超声振动频率相等或相近,就有可能引起焊件的谐振,其结果往往造成已焊焊点的脱落,严重时可导致焊件的疲劳断裂。解决上述问题的简单方法就是改变焊件与声学系统振动方向的相对位置,或者改变焊件的自振频率。伺服超声波焊接机的焊头在连接时,不可有连接螺丝过长或滑牙无法锁紧的现象。山西伺服超声波的焊接设备
伺服超声波焊接机的电箱配备有三种焊接的触发形式。电动伺服超声波焊接机多少钱
超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。点焊是应用更广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。电动伺服超声波焊接机多少钱