监测基本参数
  • 品牌
  • 盈蓓德
  • 型号
  • /
监测企业商机

传统维护模式中的故障后维护与定期维护将影响生产效率与产品质量,并大幅提高制造商的成本。随着物联网、大数据、云计算、机器学习与传感器等技术的成熟,预测性维护技术应运而生。以各类如电机、轴承等设备为例,目前已发展到较为成熟的在线持续监测阶段,来实现查看设备是否需要维护、怎么安排维护时间来减少计划性停产等,并能够快速、有效的通过物联网接入到整个网络,将数据回传至管理中心,来实现电机设备的预测性维护。以各类如电机、轴承等设备为例,目前已发展到较为成熟在线持续监测阶段,来实现查看设备是否需要维护、怎么安排维护时间来减少计划性停产等,并能够快速、有效的通过物联网接入到整个网络,将数据回传至管理中心,来实现电机设备预测性维护。设备状态监测技术是一种用于实时或定期检测和评估设备运行状况的技术。杭州电机监测系统供应商

杭州电机监测系统供应商,监测

电机状态监测和振动分析提供加速度计选择的建议。基于直流和非同步交流电机的常见故障。这些常见故障可通过振动分析检测出来,包括机械和电气故障。重点是传感器的频率范围及其安装方法,以便可靠地检测这些故障。例如,考虑以几百赫兹的周期性频率(称为故障频率)发生的撞击事件,但每个事件的能量可从起始点带走,频率在低至千赫范围内。因此,用于检测撞击、摩擦和凹槽等事件的传感器应在几百赫兹到20千赫的宽频范围内响应。对于传统的机械故障,如平衡和对准,频率范围从约0.2倍的运行速度到50-60倍运行速度是足够的。电气故障需要机械故障所需的低频和高频段。电机会同时出现机械和电气故障,这会导致振动。只要安装的振动传感器具有足够的带宽和灵敏度,就可以检测到这些故障。机械故障伴随着冲击、摩擦和疲劳,会产生比电气故障频率更剧烈的振动,但凹槽除外。凹槽产生的振动频率与摩擦频率大致相同。如果传感器的带宽和安装方法足以检测机械故障,那么它们也将检测电气故障。上海专业监测应用电机的运行状态涉及多个参数,包括振动、温度、电流、电压等。同时监测和分析这些多参数复杂性是一个挑战。

杭州电机监测系统供应商,监测

刀具监测管理系统是我们基于精密加工行业特征,结合加工中心、车床等机械加工过程,打造的一款刀具状态监测和寿命预测分析系统,通过采集主轴电流(负载)信号、位置信号、速度信号等30维度+数据信号,结合大数据流式处理、自然语言处理等自学习处理算法和行业多年经验数据沉淀,构建一套完整的刀具寿命预测和状态监控管理系统,能够实现100%断刀和崩刃监控,磨损监控识别率达到99%以上,提供基于刀具状态监测和寿命预测的异常停机控制模块,避免因刀具异常导致的产品质量损失和异常撞机事故,帮助用户节约刀具成本30%以上,100%避免刀具异常带来的产品质量损失,为用户提供无忧机加工过程管理!

现代电力系统中发电机单机容量越大型发电机在电力生产中处于主力位置,但是大型发电机由于造价昂贵,结构复杂,一旦遭受损坏,需要的检修期长,因此要求有极高的运行可靠性。就我国今后很长一段时间内的缺电、用电紧张的状况而言,发电机的年运行小时数目和满负荷率都较以往高出很多,备用容量很少的情况下,其运行可靠性显得尤为重要和突出。因此对大型机组进行在线监测与诊断,做到早期预警以防止事故的发生或扩大具有重要的现实意义。通常对发电机的“监测”与“诊断”在内容上并无明确的划分界限,可以说监测的数据和结果即为诊断的依据。监测利用各种传感器在电机运行时对电机的状态提取相关数据。故障诊断使用计算机及其相应智能软件,根据传感器提供的信息,对故障进行分类、定位,确定故障的严重程度并提出处理意见。因此状态监测和故障诊断是一项工作的两个部分,前者是后者的基础,后者是前者的分析与综合。电机状态监测技术可帮助运行维护人员摆脱被动检修和不太理想的定期检修的困境,按照设备内部实际的运行状况,合理的安排检修工作,实现所谓“预知”维修。设备状态监测对有关参数加以分析,从而有效地对设备运行状态进行系统自动监测分析或人工分析。

杭州电机监测系统供应商,监测

深度学习技术已经在滚动轴承故障监测和诊断领域取得了成功应用, 但面对不停机情况下的早期故障在线监测问题, 仍存在着早期故障特征表示不充分、误报警率高等不足. 为解决上述问题, 本文从时序异常检测的角度出发, 提出了一种基于深度迁移学习的早期故障在线检测方法. 首先, 提出一种面向多域迁移的深度自编码网络, 通过构建具有改进的比较大均值差异正则项和Laplace正则项的损失函数, 在自适应提取不同域数据的公共特征表示同时, 提高正常状态和早期故障状态之间特征的差异性; 基于该特征表示, 提出一种基于时序异常模式的在线检测模型, 利用离线轴承正常状态的排列熵值构建报警阈值, 实现在线数据中异常序列的快速匹配, 同时提高在线检测结果的可靠性. 在XJTU-SY数据集上的实验结果表明, 与现有代表性早期故障检测方法相比, 本文方法具有更好的检测实时性和更低的误报警数.使用数据分析和机器学习算法来处理多传感器数据,建立模型以监测和预测刀具的寿命和健康状况。南京监测公司

部署和维护电机监测系统可能需要昂贵的设备和专业知识,这可能对一些小型或预算有限的应用造成挑战。杭州电机监测系统供应商

在预防性维护的应用中,振动是大型旋转等设备即将发生故障的重要指标,一是由于在大型旋转机械设备的所有故障中,振动问题出现的概率比较高;第二,振动信号包含了丰富的机械及运行的状态信息;第三,振动信号易于拾取,便于在不影响机械运行的情况下实行在线监测和诊断。旋转类设备的预防性维护需要重点监控振动量的变化。其预测性诊断技术对于制造业、风电等的行业的运维具有非常重大的意义。通过设备振动等状态的预测性维护,可以及时发现并解决系统及零部件存在问题。但是对于一些不是因为设备问题而存在的固有振动,振动强度的不必要增加会对部件产生有害的力,危及设备的使用寿命和质量。在这种情况下,则需要采用振动隔离技术来解决和干预,有效抑制振动和噪声的危害,避免设备故障和流程关闭。杭州电机监测系统供应商

与监测相关的**
与监测相关的标签
信息来源于互联网 本站不为信息真实性负责