监测基本参数
  • 品牌
  • 盈蓓德
  • 型号
  • /
监测企业商机

传统方法通常无法自适应提取特征, 同时需要一定的离线数据训练得到检测模型, 但目标对象在线场景下采集到的数据有限, 且其数据分布与训练数据的分布可能因随机噪声、变工况等原因而存在差异, 导致离线训练的模型并不完全适合于在线数据, 容易降低检测结果的准确性; 其次, 上述方法通常采用基于异常点的检测算法, 未充分考虑样本前后的时序关系, 容易因数据微小波动而产生误报警, 降低检测结果的鲁棒性; 再次, 为降低误报警, 这类方法需要反复调整报警阈值. 此外, 基于系统分析的故障诊断方法利用状态空间描述建立机理模型, 可获得理想的诊断和检测结果, 但这类方法通常需要提前知道系统运动方程等信息, 对于轴承运行来说, 这类信息通常不易获知. 近年来, 深度神经网络已被成功应用于早期故障特征的自动提取和识别, 可自适应地提取信息丰富和判别能力强的深度特征, 因此具有较好的普适性. 但是, 这类方法一方面需要大量的辅助数据进行模型训练, 而历史采集的辅助数据与目标对象数据可能存在较大不同, 直接训练并不能有效提升在线检测的特征表示效果; 另一方面, 在训练过程中未能针对早期故障引发的状态变化而有目的地强化相应特征表示. 因此, 深度学习方法在早期故障在线监测中的应用仍存在较大的提升空间.盈蓓德科技提供一种既满足现场机械设备监测要求,实现振动数据采集及分析,造价较低的振动监测系统。产品质量监测数据

产品质量监测数据,监测

针对刀具磨损状态在实际生产加工过程中难以在线监测这一问题,提出一种通过通信技术获取机床内部数据,对当前的刀具磨损状态进行识别的方法。通过采集机床内部实时数据并将其与实际加工情景紧密结合,能直接反映当前的加工状态。将卷积神经网络用于构建刀具磨损状态识别模型,直接将采集到的数据作为输入,得到了和传统方法精度近似的预测模型,模型在训练集和在线验证试验中的表现都符合预期。刀具磨损状态识别的方法在投入使用时还有一些问题有待解决:①现有数据是在相同的加工条件下测得的,而实际加工过程中,加工参数以及加工情景是不断变化的,因此需要在下一步的研究中,进行变参数试验,考虑加工参数对于刀具磨损的影响,并针对常用的一些加工场景,建立不同的模型库。变换加工场景时,通过获取当前场景,及时匹配相应的预测模型即可。②本研究中的模型是一个固定的模型。今后需要根据实时的信号以及已知的磨损状态,对模型进行实时更新,从而在实时监测过程中实现自学习,不断提升模型的精度和预测效果。嘉兴汽车监测设备电机发生故障前进行监测和故障预测,成为本领域技术人员亟需解决的技术问题。

产品质量监测数据,监测

工业设备的预测性维护的市场需求显而易见,但是预防性维护想要产生业务价值、真正大规模发展却是遇到了两个难题。首先项目实施成本过高,硬件设备大多依赖进口。比如数采传感器、设备等。这导致很多企业在考虑投入产出比时比较犹豫。其次是技术需要突破,目前大多数供应商只实现了设备状态的监视,真正能实现故障准确预测的落地案例寥寥无几。供应商技术和能力还需要不断升级。预防性维护要想实现更好的应用,要在以下方面实现突破。实现基于预测的维护,提升故障诊断及预测的准确率提高软硬件产品国产化率,降低实施成本。

低信噪比微弱信号特征早期故障的信号处理。早期故障信息具有明显的低信噪比微弱信号的特征,为实现早期故障有效分析,涉及方法包括:多传感系统检测及信息融合,非平稳及非线性信号处理,故障征兆量和损伤征兆量信号分析,噪声规律与特点分析,以及相关数据挖掘、盲源分离、粗糙集等方法。故障预测模型构建。构建基于智能信息系统的设备早期故障预测模型,这类模型大致有两个途径,分别是物理信息预测模型以及数据信息预测模型,或构建这两类预测模型相融合的预测模型。运行状态劣化的相关评价参数、模式及准则。如表征设备状态发展的参数及特征模式,状态发展评价准则及条件,面向安全保障的决策理论方法,稳定性、可靠性及维修性评估依据及判据等。物联网声学监控系统以音频数据,辅以其他设备参数,通过物联网技术实现设备状态的远程感知,基于AI神经网络技术,计算并提取设备音频特征,从而实现设备运行状态的实时评估与故障的早期识别。帮助企业用户提升生产效率,保证生产安全,优化生产决策。电机健康管理是基于各类数据监测和故障预测对设备完好性、可用性的评估和控制。

产品质量监测数据,监测

现代化生产企业为了极大限度地提高生产水平和经济效益,不断地向规模化和高技术技术含量发展,因此生产装置趋向大型化、高速高效化、自动化和连续化,人们对设备的要求不仅是性能好,效率高,还要求在运行过程中少出故障,否则因故障停机带来的损失是十分巨大的。国内外化工、石化、电力、钢铁和航空等部门,从许多大型设备故障和事故中逐渐认识到开展设备故障诊断的重要性。管理好用好这些大型设备,使其安全、可靠地运行,成为设备管理中的突出任务。对于单机连续运行的生产设备,停机损失巨大的大型机组和重大设备,不宜解体检查的高精度设备以及发生故障后会引起公害的设备。传统的事后维修和定期维修带来的过剩维修或失修,使维修费用在生产成本中所占比重很大。状态监测维修是在设备运行时,对它的各个主要部位产生的物理化学信号进行状态监测,掌握设备的技术状态,对将要形成或已经形成的故障进行分析诊断,判定设备的劣化程度和部位,在故障产生前制订预知性维修计划,确定设备维修的内容和时间。因此状态监测维修既能经常保持设备的完好状态,又能充分利用零部位的使用寿命,从而延长大修间隔,缩短大修时间,减少故障停机损失。刀具间接监测手段无需在设备停机或者切削过程间隔中监测,实际应用机会多。南通状态监测特点

对大中型电动机状态监测,及时了解它们的工作状态,合理地安排检修,能够较好地保证电动机的平稳运行。产品质量监测数据

低信噪比微弱信号特征早期故障的信号处理。早期故障信息具有明显的低信噪比微弱信号的特征,为实现早期故障有效分析,涉及方法包括:多传感系统检测及信息融合,非平稳及非线性信号处理,故障征兆量和损伤征兆量信号分析,噪声规律与特点分析,以及相关数据挖掘、盲源分离、粗糙集等方法。故障预测模型构建。构建基于智能信息系统的设备早期故障预测模型,这类模型大致有两个途径,分别是物理信息预测模型以及数据信息预测模型,或构建这两类预测模型相融合的预测模型。运行状态劣化的相关评价参数、模式及准则。如表征设备状态发展的参数及特征模式,状态发展评价准则及条件,面向安全保障的决策理论方法,稳定性、可靠性及维修性评估依据及判据等。物联网声学监控系统,辅以其他设备参数,通过物联网技术实现设备状态的远程感知,基于AI神经网络技术,计算并提取设备音频特征,从而实现设备运行状态的实时评估与故障的早期识别。帮助企业用户提升生产效率,保证生产安全,优化生产决策。产品质量监测数据

上海盈蓓德智能科技有限公司成立于2019-01-02,位于上海市闵行区新龙路1333号28幢328室,公司自成立以来通过规范化运营和高质量服务,赢得了客户及社会的一致认可和好评。公司主要经营智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统等,我们始终坚持以可靠的产品质量,良好的服务理念,优惠的服务价格诚信和让利于客户,坚持用自己的服务去打动客户。盈蓓德,西门子集中了一批经验丰富的技术及管理专业人才,能为客户提供良好的售前、售中及售后服务,并能根据用户需求,定制产品和配套整体解决方案。我们本着客户满意的原则为客户提供智能在线监诊系统,西门子Anovis,声音与振动分析,主动减振降噪系统产品售前服务,为客户提供周到的售后服务。价格低廉优惠,服务周到,欢迎您的来电!

与监测相关的**
与监测相关的标签
信息来源于互联网 本站不为信息真实性负责