厌氧反应器的接种:
启动运行的首要步骤是接种厌氧污泥。直接接种颗粒污泥可以省去絮状污泥培养出颗粒污泥的过程,大幅度缩短启动运行的时间。
1.初次启动用的絮状污泥,可以是城市污水处理厂的消化污泥。即好氧处理过程中产生的剩余污泥,进行厌氧消化处理后所得到的厌氧污泥。用这种消化污泥的好处是污泥来源广、数量大、能满足大量接种时的需求。
2.接种颗粒污泥时,应当有些选用来自处理同样性质废水的厌氧反应器,即进行同质二次启动。同质启动不需要对污泥进行驯化,只要完成富集培养即可。如果接种来自不同废水的厌氧反应器,即进行异质二期启动,首先需要驯化,然后才是颗粒污泥的富集培养。 USR是一种结构简单、适用于高悬浮固体原料的反应器。长沙三仓式厌氧反应器设计规范
颗粒污泥形成的条件:根据一些研究成果和厌氧反应器运行的实践经验,我们虽然还不能充分揭示颗粒污泥形成的全貌,但可以断言,颗粒污泥的形成必须具备三个基本条件:(1)接种物中要有颗粒污泥的原始核粒;颗粒污泥的形成,要有一个适合微生物附着生长的原始核粒作为颗粒污泥生长的核。(2)反应器要有较高的水力负荷;高水力负荷和高产气负荷推动发酵液流动时所产生的剪切力,是形成颗粒污泥的原动力。(3)要具备合适的营养条件;颗粒污泥的生长需要较多样和丰富的营养物质。湖北内循环厌氧反应器原理AMBR反应器是多室串联运行,至少有三个格室。
厌氧反应器处理的四个阶段:即厌氧消化过程分为水解阶段、酸化阶段、产乙酸产氢阶段、产甲烷阶段四个部分。水解阶段:微生物菌体分泌胞外水解酶,将碳氢化合物、脂肪和蛋白质转化为单糖、氨基酸和长链脂肪酸(LCFA);酸化阶段:水解阶段的产物在酸化微生物菌群的作用下降解为戊酸、丁酸、丙酸、乙酸、二氧化碳和氢;产乙酸产氢阶段,功能微生物菌群将戊酸等转化为甲烷细菌可以直接利用的基质-乙酸、二氧化碳和氢;在的产甲烷阶段,产甲烷细菌将乙酸、氢与二氧化碳转化为甲烷和二氧化碳,并伴随着微生物的生长与衰亡,在此同时,系统内的硫酸盐或硝酸盐在硫酸盐还原菌或反硝化菌的作用下,以乙酸或氢作为电子供体,被还原成硫化氢或氮气。
厌氧处理的优点:(1)运行成本低。厌氧处理每去除1kgCOD的耗电量约为好氧处理的1/8,动力消耗少;(2)动力设备只需要进水水泵,处理设备的故障较少,易于操作和管理;(3)可产生沼气能和污泥肥,1m3沼气用于干烧锅炉相当于1kg原煤;1m3沼气可发电;(4)对废水COD的适应范围广,从几千mg/L到十几万mg/L的废水都能够处理;(5)对营养物的需求量少。由于微生物增长缓慢,细胞物质产量少,因此对各种营养物的需求量相对较少,约为好氧处理的1/5;好氧处理的COD:N:P为100:5:1;而厌氧处理的COD:N:P为500:5:1;(6)可间断运行。产甲烷菌的內源代谢强度低,可长时间耐受饥饿而存活;(7)处理装置容积小,好氧处理的容积有机负荷一般只有(m3d),而厌氧处理的容积有机负荷能达到2~40kgCOD/(m3d)。 目前,全混合式的厌氧接触反应器已被用于废水中SS 浓度较高的好氧污泥处理、酒精废醪处理。
厌氧反应器膨胀污泥床:
根据污泥床膨胀程度可以把污泥床区分为3种形态:静止态、膨胀态和全混合态。
1、静止态污泥床是在反应器尚未运行的情况下形成的。当反应器没有进水、没有沼气产生时,厌氧污泥会全部沉淀在反应器的下底部,成为静止态污泥床。静止态污泥床的特点是:厌氧污泥在反应器中处于静止的状态;厌氧污泥与发酵液有着清晰的界面;污泥床中各处的污泥浓度大致是均衡的。利用静止态污泥床可以较为准确地测出反应器中污泥的总量、污泥浓度及污泥负荷。
2、反应器在运行过程中,在进水水力的推动和沼气气泡的搅动下,污泥床体积增大,这一现象称为污泥床膨胀,形成膨胀态污泥床。膨胀态污泥床中的污泥浓度是不均等的,从上至下存在一个由小到大的污泥浓度梯度。上部为污泥悬浮层,污泥浓度较低;中部的污泥浓度较高;下部的污泥浓度比较高,密度也较大。
3、膨胀态污泥床形成后,如果继续提高反应器的容积负荷,随着进水量和沼气产量的不断增加,进水水力和沼气对污泥的搅动强度随之增加。膨胀态污泥床中污泥浓度梯度会越来越小,当水力负荷与产气负荷增大到一定程度时,污泥浓度梯度会完全消失,污泥床中任何一处的污泥浓度都是相同的,此时的污泥床便转变成全混合态。 外循环厌氧反应器可以高效的分离模块。湖北内循环厌氧反应器原理
塞流式厌氧反应器不需要搅拌,池形结构简单,能耗低。长沙三仓式厌氧反应器设计规范
内循环厌氧反应器(IC反应器)中气液分离器的作用:
气液分离器又称气水分离器,它处于IC反应器罐体沿口的上方,位置高出发酵液的液面,气液分离器的作用是:
(1)从发酵液中分离出沼气下反应室产生的沼气连同发酵液,经由一级提升管进入气液分离器;如果采用二级提升,上反应室产生的沼气连同发酵液经由二级提升管进入气液分离器。发酵液中的沼气,在气液分离器中实现沼气(气)与发酵液(液)的分离。
(2)是发酵液内循环的中转站下反应室的发酵液经由提升管进入气液分离器、分离出沼气后,在重力的作用下,进入回流管,再次返回到下反应室,从而形成了发酵液从下到上、再从上到下的内循环。气液分离器相当于发酵液内循环上行与下行路途上的一个“中转站"。 长沙三仓式厌氧反应器设计规范