发酵液酸化的原因:
在启动运行阶段,在产甲烷菌尚未得到大量的富集之前,采用了过高的容积负荷水解产酸菌倍增时间较短、繁殖较快,而产甲烷菌的倍增时间较长,繁殖较慢。在启动运行过程中,当产甲烷菌尚未充分富集起来之前,如果有机负荷过高,水解产酸菌的代谢旺盛,产甲烷菌来不及消耗产酸菌所产生的乙酸,从而会导致有机酸的积累,引起pH值下降。
在反应器运行过程中,如果反应器并未超负荷运行,却出现了酸化的现象,那么,很有可能是由于厌氧污泥出现了过度的流失。污泥流失所带来的严重后果是产甲烷菌的丧失。污泥流失尽管也丧失了产酸菌,但产酸菌能得到较快的增殖和补充,由于产甲烷菌数量的不足,不能及时地将乙酸转化为甲烷,从而导致酸化现象的发生。
在运行过程中厌氧消化条件发生了较大的变化与波动在反应器的运行过程中,如果厌氧消化条件(如有机负荷、温度、碱度、pH值以及有毒物质的浓度等因素)出现了较大的波动时,由于水解产酸菌的适应能力强,受到的影响较小;而产甲烷菌的适应能力弱对这些变化的因素更为敏感,从而会受到一定程度的抑制。在这种情况下,水解产酸菌产生的VFA不能全部被产甲烷菌所消耗,从而使厌氧消化系统内会出现有机酸的大量积累。 折流板厌氧反应器拥有良好的生物分布。河南第三代厌氧反应器供应商
厌氧系统对氮、磷、氮的需求:
厌氧消化微生物需要氮元素、磷元素和硫元素。
1.氮元素可以来自任何能提供-NH2或者NH4+的化合物。如各种含氮的有机物(蛋白质、氨基酸)和含氮的无机物(NH4OH、NH4HCO3),都可以作为氮源。其中产甲烷菌只能以氨态氮作为氮源。
2.磷元素可以来自磷酸二氢钾、磷酸二氢钠、磷酸二氢铵。
3.硫元素来自无机硫,比如硫酸根;或者有机硫,比如蛋白质中的-SH2.
营养元素的C/N/P的比例范围可以是300~500:5:1之间。通常是300~350:5:1
江西内循环厌氧反应器技术折流板厌氧反应器结构简单、效果稳定。
关于厌氧反应器颗粒污泥的流失:
颗粒污泥的沉降速度可达到18~100m/h,颗粒污泥反应器的三相分离器窄缝处的上升流速能超过18m/h的情况不多见,颗粒污泥通常都能比较容易的通过三相分离器的窄缝而返回反应器中,因此水力负荷对颗粒污泥流失所造成的影响较小。
造成颗粒污泥流失的主要原因是产气负荷:
1)颗粒污泥同絮状污泥一样,也会因吸附微小的沼气气泡而产生抬升力,但是由于颗粒污泥比表面积小,与絮状污泥相比,颗粒污泥所受到的抬升力要小得多。因此,沼气的抬升力不是造成颗粒污泥流失的主要原因。但沼气气泡对密度较小的颗粒污泥或细微颗粒污泥的抬升作用仍是不可忽略的。
2)沼气气泡破裂时,在冲刷的作用下,即便颗粒污泥的沉降速度较大,也难以抵挡气泡破裂时产生的冲刷作用。因此沼气的冲刷作用是导致颗粒污泥流失的重要原因。
3)当颗粒污泥反应器中存在大量的絮状污泥时,颗粒污泥的原始核粒以及刚开始成长的较微小的颗粒污泥,往往被包裹在絮状污泥中。当絮状污泥流失时,他们会受到絮状污泥的裹挟而流失。当废水中固体悬浮物SS浓度较高时,SS对细微的颗粒污泥也会产生裹挟作用。因此絮状污泥和SS的裹挟作用是细微颗粒污泥流失的重要原因。
厌氧反应器的运行温度
温度会影响微生物的代谢速率和生长速率以及沼气产量和沼气中各种气体成分的比例,还会影响到厌氧消化系统中各种化学成分的溶解度和酸碱度的平衡。
通常中温厌氧比较高效的温度运行范围是35~39℃之间。并且随着温度的上升,产甲烷活性缓慢上升,达到最大值后,如果温度继续上升,则产甲烷菌的活性又会突然下降,即厌氧中温反应的运行温度任何时候不得超过40℃。
而当厌氧反应器温度低于25℃时,水解酸化菌的活力***降低,不能为产甲烷菌提供足量的底物,从而影响了甲烷的产量。事实上,产甲烷菌是可以在低于25℃的条件下,仍然具有较高的产甲烷活性。 厌氧反应器的处理有三个阶段。
厌氧系统氧化还原电位(ORP):
氧化还原电位,是用来反映水溶液中所有物质表现出来的宏观氧化还原性。氧化还原电位越高,氧化性越强,氧化还原电位越低,还原性越强。电位为正表示溶液显示出一定的氧化性,为负则表示溶液显示出一定的还原性。厌氧反应器内的ORP范围在-400~-100mv中,比较好的ORP应当为-400~-350mv。在运行过程中,反应器内ORP越低,显示出反应器的厌氧条件越好。反应器发生酸化后,ORP会有较大上升,难以确保甲烷菌正常生存所需要的厌氧条件,进而使得产甲烷菌的活性受到抑制。
EGSB与UASB反应器的结构相似,不同的是EGSB反应器采用相当高的上流速度。浙江内循环厌氧反应器三相分离
内循环厌氧反应器,是目前世界上效率很高的厌氧反应器。河南第三代厌氧反应器供应商
内循环厌氧反应器(IC反应器)的上升流速的控制原因:
①进水的上升流速决定了上反应室的上升流速,但上反应室不希望有太大的上升流速。上反应室的上升流速越小,越有利于污泥的沉降与滞留;
②进水的上升流速越大,上反应室三相分离器窄缝处的上升流速越大,对污泥回流所造成的干扰越大;
③采用较大的上升流速,需要有更大的进水量。如果有机废水COD较高,必然要稀释进水COD,或进行厌氧出水回流,这会浪费水资源,并增加动力消耗。
④在IC反应器容积负荷较高的情况下,内循环为下反应室贡献的上升流速,要比进水的上升流速大得多。只要有内循环的存在,进水的上升流速即使只有4m/h,也足以满足IC反应器对上升流速的要求。 河南第三代厌氧反应器供应商
上海碧州环保能源科技有限公司是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的环保中汇聚了大量的人脉以及**,在业界也收获了很多良好的评价,这些都源自于自身的努力和大家共同进步的结果,这些评价对我们而言是比较好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同上海碧州环保能源科技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!