在工厂车间、厨房附近等油污较多的场景,储能下箱体易附着油污,影响外观且可能渗入缝隙损坏部件,因此设计防油污附着功能。下箱体外壳表面采用纳米级疏水疏油涂层,涂层表面张力小于 20mN/m,油污滴落在表面时会形成球状滚落,不易附着;底部面板与支撑脚连接处,采用倾斜式密封结构,即使有油污堆积,也会随重力滑落,不会渗入内部缝隙。工商业食品加工车间...
查看详细 >>针对北方冬季、高原等寒冷环境,储能液冷板设计防冻功能,避免冷却液结冰导致板体损坏或散热失效。液冷板内部集成防冻监测模块,实时检测冷却液温度,当温度低于 0℃时,自动启动电加热丝预热,将冷却液温度维持在 5-10℃;同时优化通道结构,减少冷却液滞留区域,降低结冰概率。冷却液选用低冰点配方,冰点可达 - 35℃,即使在极端低温环境下也不易冻结...
查看详细 >>储能下箱体底部易成为鼠虫侵入的通道,因此设计防鼠虫侵入功能。箱体底部所有通风孔、线缆进出口均安装金属防虫网,网孔尺寸小于5mm,可阻挡老鼠、蟑螂等小型生物进入;箱体与地面接触的密封条采用带有刺激性气味的防鼠橡胶,气味对人体无害,但可驱赶鼠类靠近。户用底层或地下室的储能场景中,防鼠虫设计能避免老鼠咬坏底部线缆,防止蟑螂在箱体内部筑巢影响设备...
查看详细 >>温度稳定是保障储能系统高效运行的关键,储能箱体配备了完善的温度控制功能,通过主动与被动结合的温控方式,维持内部环境温度在适宜范围。箱体内侧设置有保温层,采用耐高温、低导热系数的保温材料,可减少外部环境温度变化对内部的影响,在寒冷或炎热地区起到良好的隔热作用。主动温控系统则包含散热风扇、散热片以及加热装置,当箱内温度过高时,风扇启动加速空气...
查看详细 >>当遭遇暴雨或积水倒灌时,普通排水速度可能无法及时排出箱内积水,因此设计应急排水提速功能。箱体底部增设 2 个直径 30mm 的大口径排水孔,排水孔内安装单向排水阀,开启时排水流量可达 10L/min,较普通排水孔提速 3 倍;排水孔周边设置导流斜坡,坡度为 8°,可快速引导积水向排水孔汇集,减少积水滞留时间。地下室储能场景中,若雨水倒灌进...
查看详细 >>为防止冷却液液位过低导致散热失效或泵体损坏,储能液冷板设计低液位预警功能,实时监控冷却液状态。液冷板的储液腔内部安装液位传感器,持续检测冷却液液位高度,当液位低于预设比较低值时,传感器触发面板上的红色预警信号灯闪烁,同时发出蜂鸣提示音,提醒工作人员及时补充冷却液。预警信号可同步上传至储能系统监控平台,方便远程知晓液位状态;部分型号支持联动...
查看详细 >>针对狭小空间、不规则布局等异形安装场景,储能液冷板具备灵活适配功能,可根据安装空间调整形态与尺寸。液冷板采用模块化设计,支持横向与纵向拼接,可组合成不同长宽比例的散热单元,适配狭长或低矮的安装空间;部分型号支持折弯定制,可根据设备布局进行一定角度的折弯,贴合异形设备表面。板体厚度可在 6-15mm 之间调整,薄型设计可嵌入狭小间隙,厚型设...
查看详细 >>针对高原高海拔地区气压低、温差大的特点,储能液冷板优化高海拔适配功能,确保在特殊环境下稳定运行。液冷板内部通道压力耐受设计升级,可适应高海拔低气压环境,避免因气压变化导致冷却液沸腾或通道变形;板体材质选用抗疲劳性能更优的铝合金,能抵御高海拔地区剧烈的昼夜温差带来的热胀冷缩应力,减少结构损坏风险。冷却液沸点经过特殊调配,沸点提升至 120℃...
查看详细 >>储能下箱体在储能系统底部,易受到搬运设备碰撞或地面杂物冲击,因此强化防冲击防撞设计。下箱体外壳底部 300mm 高度范围内采用双层钢板结构,内层钢板厚度 5mm,外层钢板厚度 3mm,两层之间填充 20mm 厚的缓冲泡沫,可吸收外部冲击能量;箱体四角的支撑脚外侧加装弧形防撞护角,护角采用高刚性聚乙烯材料,抗冲击强度达 15kJ/m²,能有...
查看详细 >>针对部分地区电网电压不稳定的情况,储能液冷板设计电压波动适应功能,确保在电压波动范围内正常运行。液冷板的控制电路采用宽电压输入设计,适配电压范围为 100V-240V,无论是电网电压偏高、偏低还是瞬时波动,都能稳定供电,不会出现停机或故障。电路内部安装电压稳压模块,可自动调节输入电压,输出稳定的工作电压,保障温度监测、流量控制等功能不受电...
查看详细 >>储能箱体在安全设计方面尤为重视,集成了多重安全防护与预警功能,全方面保障系统运行安全。在防火方面,箱体采用阻燃材料制作,内部设置防火隔断,可有效阻止火焰蔓延;同时,箱内配备烟雾探测器与温度传感器,一旦检测到烟雾或温度异常升高,能立即发出预警信号,并联动切断相关电路,防止火灾事故发生。在防漏电方面,箱体具备良好的绝缘性能,内部安装漏电保护装...
查看详细 >>储能液冷板优化低流阻设计,减少冷却液循环过程中的能量损耗,降低配套泵体的运行负荷,实现节能运行。内部通道采用流线型设计,通道转角处采用圆弧过渡,避免直角转弯造成的流阻损失;通道截面经过流体力学仿真优化,在保证散热面积的前提下,将流阻系数降至比较低。液冷板进出液接口采用大口径设计,减少管路连接处的局部阻力;多块液冷板并联使用时,采用均衡分流...
查看详细 >>