首页 > 新闻中心
蛋白质分离纯化是生物化学、分子生物学及生物技术领域的主要技术与基础。其根本目的在于,从复杂的生物样本(如细胞、组织或体液)中,特异性地分离出单一的目标蛋白质,并使其达到所需的纯度与活性水平。这一过程对于研究蛋白质的结构、功能、相互作用,以及对于开发诊断试剂、疗愈性抗体和酶制剂等生物制品都至关重要。然...
固定化金属离子亲和层析是重组蛋白纯化中较广泛应用的技术之一。其原理是将螯合剂固定于介质上,螯合镍离子、钴离子等过渡金属离子,这些金属离子又能与重组蛋白末端融合的寡聚组氨酸标签(如6xHis标签)特异性结合。结合后,通过提高咪唑浓度(咪唑竞争性结合金属离子位点)或降低pH进行洗脱。IMAC具有结合容量...
亲和层析是所有层析方法中通常能提供比较高纯度和富集倍数的一步。其原理是利用目标蛋白与固定相上配体之间高度特异性的、可逆的生物化学相互作用。较经典的例子是固定化金属离子亲和层析(IMAC),用于纯化带有组氨酸标签(His-tag)的重组蛋白,其与柱上的镍离子或钴离子结合。另一个广泛应用的是蛋白质A或蛋...
对于一些非常不稳定的蛋白质,传统的多步纯化流程可能导致活性大量丧失。此时,可以采用“稳定性指导”的策略。其主要思想是,在工艺开发的每一个阶段,都将蛋白质的稳定性(半衰期)作为一个关键指标来筛选条件。这包括:快速筛选能稳定目标蛋白的缓冲液成分、pH、盐种类、添加剂和温度;选择层析方法时,优先考虑那些能...
连续层析是生物制药下游工艺的新趋势,它通过多柱切换技术,使层析过程在不同阶段(如上样、洗淋、洗脱、再生)同时进行,提高了介质利用率和生产效率,减少了设备占地面积和缓冲液消耗。这种模式在抗体的大规模生产中正展现出巨大的经济和环保优势。在蛋白质组学研究中,面对细胞或组织中成千上万种蛋白质的极端复杂性,直...
以蛋白质结晶(用于X射线衍射结构解析)为目标的纯化过程,对蛋白质的“质量”提出了更高要求。这远不止是SDS-PAGE显示的单一条带。它要求蛋白质样品在化学上高度均一、构象高度均一、且处于单分散状态(即没有可观测的聚合体)。任何微小的杂质、化学修饰(如脱酰胺)或构象异构体都可能成为结晶的障碍。因此,纯...
在现代自动化纯化系统中,集成多种在线检测器可以实时监控纯化进程。除了基本的紫外检测器,还包括在线电导率仪监测盐浓度、在线pH计监测酸碱度,甚至在线光散射和DLS检测器,能够实时判断样品单分散性和检测聚集体形成,为过程控制和决策提供即时数据支持。纯化后的蛋白质需要妥善储存以维持其长期稳定性。关键考虑因...
在设计和执行纯化方案时,预先了解或预测目标蛋白质的理化性质至关重要。这些性质是选择纯化方法的理论依据。关键参数包括:蛋白质的分子量(可通过序列预测或SDS-PAGE估算)、等电点pI(通过序列计算,用于离子交换层析的选择)、疏水性(影响疏水相互作用层析和反相层析)、表面电荷分布、二硫键的数量与位置、...
金属螯合亲和层析(IMAC)是重组蛋白纯化中较常用的亲和技术,利用His标签与二价金属离子(Ni²⁺、Co²⁺、Cu²⁺)的特异性结合实现分离。树脂表面偶联亚氨基二乙酸(IDA)或 nitrilotriacetic acid(NTA)基团,可螯合金属离子。His标签通常由6个组氨酸组成,其咪唑环可与...
固定化金属离子亲和层析是重组蛋白纯化中较广泛应用的技术之一。其原理是将螯合剂固定于介质上,螯合镍离子、钴离子等过渡金属离子,这些金属离子又能与重组蛋白末端融合的寡聚组氨酸标签(如6xHis标签)特异性结合。结合后,通过提高咪唑浓度(咪唑竞争性结合金属离子位点)或降低pH进行洗脱。IMAC具有结合容量...
样本预处理是蛋白分离纯化的首要步骤,直接影响后续纯化效果。对于固体生物样本如动植物组织,需先通过机械破碎(匀浆、研磨)或酶解(胰蛋白酶、溶菌酶)方式破坏细胞壁与细胞膜,释放胞内蛋白。液体样本如发酵液则需进行离心或过滤处理,去除细胞碎片、沉淀等固体杂质。预处理阶段还需加入蛋白酶抑制剂(如PMSF、ED...
混合模式层析的固定相配体设计为能够同时通过两种或多种不同的相互作用机制与蛋白质结合,例如静电相互作用与疏水相互作用的结合,或氢键与π-π相互作用的结合。这种多重作用机制使得其选择性不同于传统的IEX或HIC,往往能分离用传统方法难以分开的蛋白质。它可以在高盐条件下结合带电荷的蛋白质,这打破了传统IE...