化学转染可分为基于脂质体或非基于脂质体。基于脂质体的转染试剂是一种化学物质,它能够形成带正电的脂质聚集体,这些聚集体可以与宿主细胞的磷脂双分子层顺利融合,从而允许外来遗传物质以**小的阻力进入。另一方面,非脂质体转染试剂可进一步分为几类,包括磷酸钙、树状大分子、聚合物、纳米颗粒和非脂质体。磷酸钙是转染中使用的低价的化学物质之一,转染涉及将带正电的钙离子(Ca2+)与带负电的核酸结合,形成沉淀,然后被宿主细胞吸收。然而,磷酸钙转染的成功率较低,需要事先优化才能达到较高的转染效率。树状大分子是三维的、高度支化的有机大分子,可以与核酸形成复合物,作为一种替代的非脂质体转染试剂,它优于磷酸钙。然而,使...
PEI的分子量对细胞毒性和基因转移活性有影响。由于PEI在细胞内不可降解,所以分子量越高,细胞毒性越强。此外,具有较高分子量的PEI形成更稳定的聚合物,使其更容易转染,但更难在细胞内释放核酸。另一方面,PEI产生的复合物分子量降低,更难以转染;但它更容易释放核酸。因此,确定哪种分子量的PEI更有利是不能随意实现的。然而,一些改进使PEI在应用中更加先进。低分子量(LMW) PEI与可生物降解的骨架(如聚谷氨酸衍生物(PEG-b-PBLG))偶联,可***降低细胞毒性并保持较高的转染效率。通过用丙烯酸乙酯修饰胺,伯胺的乙酰化,或在聚合物结构中引入带负电荷的丙酸或琥珀酸基团,可以制备出各种无毒的分...
在选择合适的小RNA分子进行转染相关功能分析之前,应先确定其实验需要。例如,siRNA*对一个靶标具有高度特异性,而miRNA具有调节多个下游靶标的潜力。如今,可以人工合成各种类型的短长度寡核苷酸来模仿小RNA分子,以研究这些小RNA分子的敲入/敲入/敲出效应。常用的寡核苷酸可分为模拟物或拮抗剂。模拟物是一种基于rna的小寡核苷酸(可能是piRNA、miRNA或siRNA),其结构使其能够与目标mRNA结合以抑制其功能,从而导致特定基因的翻译抑制。相反,拮抗剂是一种寡核苷酸,它将与互补的小RNA链(如miRNA)结合以拮抗其活性,从而增加目标基因的表达。脂质复合物(CLNACs)通过网格蛋白参...
转染是将外源核酸送入细胞的过程,其目的是使外源基因编码的蛋白能够在细胞中表达。这些编码序列通常由质粒DNA携带到细胞中,以研究其未知的功能或用于特定的***目的。此外,降低基因表达的siRNA也是核酸转染的靶标。通过siRNA的敲低作用,研究人员可以操纵愈合基因的表达来研究基因的功能和相互作用。siRNA在**研究、基因***、组织工程等方面发挥着重要作用。mRNA曾被认为不适合用于基因***药物,因为它易于降解。然而,研究人员通过化学修饰提高了其稳定性,使其成为表达外源基因的理想核酸药物。mRNA疫苗已用于预防COVID-19,许多用于*****的mRNA药物正在开发中。裸核酸分子被细胞吸收...
在7种转染试剂(DAC-30、DC-30、Lipofectin、LipofectAMINEPLUS、Effectene、FuGene 6和superect)中,FuGene 6转染HASMCs和α-10 SMCs的效率比较高。在这两种细胞系中,superect产生的细胞毒性作用比较高,其次是DAC-30和Lipofectamine Plus,而FuGene 6被认为对细胞系相对安全。在另一项比较人类和动物来源的不同细胞系转染结果的研究中,猪气管上皮细胞(PTE)被Effectene、Lipofectamine Plus和PEI等转染试剂转染的效率高于人类气管上皮细胞(HTE)。化学转染后,转染...
携带要转染的特定核酸的载体构建可以进一步分为病毒载体或质粒载体。病毒和质粒通过存在合适的真核启动子促进外源转基因的表达。病毒载体可能在宿主细胞中触发免疫原性反应,而非病毒载体的免疫原性相对较低。需要一种传递机制来促进靶向核酸或载体结构转移到宿主细胞中。其中一些需要物理方法,而另一些涉及使用递送载体,可能是脂质载体或非脂质载体,以帮助增强载体载体复合物与宿主细胞膜之间的接触,从而促进复合物进入细胞。设计和启动转染试验可能具有挑战性,特别是可供选择的转染方法或策略种类繁多的情况下。作为一般指导原则,建议使用早期传代的细胞以获得良好的转染效率,特别是涉及原代或干细胞的转染。安徽转染试剂试用在一项将质...
在选择合适的小RNA分子进行转染相关功能分析之前,应先确定其实验需要。例如,siRNA*对一个靶标具有高度特异性,而miRNA具有调节多个下游靶标的潜力。如今,可以人工合成各种类型的短长度寡核苷酸来模仿小RNA分子,以研究这些小RNA分子的敲入/敲入/敲出效应。常用的寡核苷酸可分为模拟物或拮抗剂。模拟物是一种基于rna的小寡核苷酸(可能是piRNA、miRNA或siRNA),其结构使其能够与目标mRNA结合以抑制其功能,从而导致特定基因的翻译抑制。相反,拮抗剂是一种寡核苷酸,它将与互补的小RNA链(如miRNA)结合以拮抗其活性,从而增加目标基因的表达。超声辅助转染涉及在宿主细胞膜上制造微小的...
脂质颗粒的加入导致内体DNA释放增加。Delgado等人通过在肾细胞中添加鱼精蛋白,设法提高了固体脂质纳米颗粒的转染效率,但与不添加鱼精蛋白的对照组相比,相同的多功能单元,DNA/鱼精蛋白/SLN(固体脂质纳米颗粒),降低了HEK 293细胞系(人胚胎肾细胞)的转染效率。这给了我们希望,通过加入必要的配体的可能性,使用纳米颗粒的转染可能会调整到给定的细胞类型。Bahrami et al.经表明,不同种类的纳米颗粒以不同的方式与细胞膜结合。形成这些键的差异取决于它们的球形或非球形形状,也取决于不同纳米颗粒所表现出的各种粘附电位以及它们进入后引起的膜形状变化。Prabha等人的实验表明,纳米颗粒的...
脂质复合物(CLNACs)通过网格蛋白参与的内吞作用进入细胞,并被困在核内小体中,从这些囊泡结构中释放出来,进入核周区域,***进入细胞核。内吞作用在一定程度上取决于脂质体载体的物理化学性质。Friend和同事描述了可能由脂质体与核膜融合而形成的囊泡和网状核内膜。**近有研究表明,很大一部分从核内体释放到细胞质质的质粒由于与细胞质中的大离子凝聚剂结合而失去活性。这可能解释了脂质转染所观察到的低且可变的转染率。虽然这些脂质载体从细胞外部到细胞核的路径尚未完全确定,但核酸能够产生其效果本身就是一项惊人的壮举。至少对于质粒而言,较小的结构体比较大的质粒具有更高的转染率。核酸外排,虽然不是常见的报道,...
基因***是阳离子聚合物作为转染剂的主要应用。通过携带质粒DNA、mRNA和siRNA,阳离子聚合物实现了与***相关的功能,如基因增强、基因抑制和基因组编辑。基因*****直接、或许也是**简单的策略是添加新的蛋白质编码基因。在当前**背景下,mRNA疫苗的大规模使用点燃了人们对核酸药物的浓厚兴趣。理论上,mRNA能够表达任何一种蛋白质;因此,除了作为疫苗预防传染病外,它还可以用于***其他疾病。目前的mRNA传递技术是基于脂质纳米颗粒平台,该技术的**掌握在少数几家公司手中。此外,由脂质纳米颗粒组成的mRNA疫苗应在**温下储存和运输,这严重限制了疫苗在高温或条件有限的地区的使用。因此,阳...
deae-葡聚糖是一种化学修饰的葡聚糖类似物。通过用二乙基氨基乙基修饰,右旋糖酐链的酰胺化很容易被质子化,这使得它可以自组装成带负电荷核酸的纳米颗粒。deae -葡聚糖是***个用于核酸转染的阳离子聚合物。早在20世纪50年代,它就极大地增强了脊髓灰质炎病毒和SV40病毒DNA在哺乳动物细胞中的转染。随后,deae -葡聚糖被广泛应用于RNA或DNA的转染。然而,由于以下原因,deae -葡聚糖并没有作为比较好候选物:转染效率远低于脂质体等其他试剂;deae -葡聚糖的细胞毒性和免疫原性不容忽视。在选择合适的小RNA分子进行转染相关功能分析之前,应先确定其实验需要。山西mRNA转染试剂纳米颗粒...
影响物理转染或机械转染效率的因素在很大程度上取决于这些方法的基本原理。例如,电穿孔技术依赖于电场来增加宿主细胞膜的通透性,以内化外来核酸。因此,电穿孔过程中的电压和持续时间是决定电穿孔成功与否的重要因素。施加高压的长时间电穿孔可能会导致细胞损伤并降低转染效率。通过增加电脉冲的数量也可以提高电转染效率,但这可能会降低细胞活力。另一方面,电转染效率取决于所使用的细胞类型,每当要电转染一种新的细胞类型时,应优化电穿孔条件。一些细胞如T淋巴细胞,即使在标准的电穿孔条件下也可能转染不良,而电转染成纤维细胞通常可以产生良好的转染结果。电穿孔缓冲液的组成是影响转染效率的另一个关键参数。据报道,电穿孔缓冲液中...
在转染中,DNA通常通过病毒或非病毒载体(如质粒)转运到宿主细胞中。质粒的基本结构包括启动子、复制起点、多个克隆位点、目标基因和选择标记。质粒复制需要复制的起源,而多个克隆位点包含独特的内切酶切割位点,用于插入外源基因。适当的真核启动子(如CMV或EF-1a)的存在允许外源基因在宿主细胞中表达。质粒DNA可以以线性和超螺旋DNA的形式转染。与线性DNA相比,使用超螺旋质粒DNA转染通常会产生更高的效率,线性DNA更容易被外切酶降解。然而,线性化的DNA更具重组性,因此可以更容易地整合到宿主基因组中以实现稳定的转染。在腺病毒载体或脂质体的全身递送后,转基因表达相对短暂。陕西转染试剂动物实验在大肠...
纳米颗粒,由于其在DNA转运到细胞中的保护能力,在不久的将来可以用作转基因的非病毒载体。通过将纳米粒子与许多不同的配体和化合物连接来修饰纳米粒子,有助于改善它们在细胞内的运输。将纳米颗粒靶向到细胞内的特定位置,配子和胚胎,可以通过磁转染来实现。尽管与市售的用于体外培养细胞的转染试剂相比,使用纳米颗粒转染具有相当的效率和更低的细胞毒性,但仍需要证明以这种方式传递DNA会导致体内相似水平的基因表达,特别是考虑到该技术可能导致副作用。评估转染效率至关重要,特别是在需要高转染效率以保证特定下游靶标转录后调控的功能研究中。PEI 转染试剂优惠**近一项与抗血管生成基因传递高度相关的发现是,阳离子脂质体(...
基因和RNAi***在临床上的应用需要安全高效的载体。迄今为止,核酸***的两种主要方法是基于病毒和非病毒载体。与病毒载体相关的安全问题有很多:诱导免疫反应的风险、不必要的突变和**。因此,在开发基于脂质或聚合载体的非病毒载体是势在必行的。1965年,Vaheri和Pagano引入了二乙基氨基乙基修饰的葡聚糖,这是第一种用于基因传递的聚合物。1987年,Felgner引入了DOTMA,这是第一种用于DNA转染的阳离子脂质。从那时起,大量不同的脂质和聚合物被开发出来。南京星叶生物正是利用将核酸封装在纳米级脂质体囊泡中的技术,开发出了Gemate系列转染试剂。在聚葡萄糖、精胺(PG)偶联物和第四代...
**近的研究已经确定了阳离子脂质体(CLs)的某些特征,这些特征增强了它们在体内转运核酸的能力。这些特征包括阳离子头基团及其邻近的脂肪链在主链上呈1,2关系,醚键用于桥接脂肪链到主链,成对的油基链作为疏水系链。无论如何,这些特征虽然不能决定细胞培养中更好的转染能力,但可以在体内实现更好的核酸递送。因此,必须谨慎对待体外和细胞培养的结果,不能必然地用来推断核酸载体在体内的潜力。当这些囊泡在体内引入时,其他因素(如颗粒直径)变得更加重要。使用脂质体时遇到的毒性通常与制剂中阳离子脂质与核酸之间的电荷比、所使用的制剂类型以及所给脂质体的剂量密切相关。较高的电荷比通常对多种细胞类型的毒性更大,包括*细胞...
在转染中,DNA通常通过病毒或非病毒载体(如质粒)转运到宿主细胞中。质粒的基本结构包括启动子、复制起点、多个克隆位点、目标基因和选择标记。质粒复制需要复制的起源,而多个克隆位点包含独特的内切酶切割位点,用于插入外源基因。适当的真核启动子(如CMV或EF-1a)的存在允许外源基因在宿主细胞中表达。质粒DNA可以以线性和超螺旋DNA的形式转染。与线性DNA相比,使用超螺旋质粒DNA转染通常会产生更高的效率,线性DNA更容易被外切酶降解。然而,线性化的DNA更具重组性,因此可以更容易地整合到宿主基因组中以实现稳定的转染。在聚葡萄糖、精胺(PG)偶联物和第四代聚酰胺树状大分子(PAMAM G4)的帮助...
选择合适的转染试剂可能取决于几个因素,包括转染核酸的类型和转染的复杂性(单转染或共转染)。一些试剂如Effectene和TransIT-X2是专门用于质粒DNA转染的,而一些试剂如Lipofectamine RNAiMAX更适合于小寡核苷酸的转染。哺乳动物原代细胞由于其有限的寿命和有限的扩增能力,通常比其他细胞类型更不容易受到转染。非脂质体试剂在转染人原代细胞方面优于脂质体试剂,包括PEC、HASMC和HAEC、人原代成肌细胞和AGS。相比之下,据报道,基于脂质体的试剂(如Lipofectamine和DharmaFECT家族)在转染其他原代人细胞(如原代脐带静脉内皮细胞(HUVEC)和BM-M...
在大肠杆菌细胞中复制的质粒通常含有二核苷酸频率为1:16的CpG基序,这与细菌DNA中的频率相似。CpG免疫刺激的两个应用领域是疫苗接种和肿瘤免疫***。许多出版物表明,免疫刺激CpG基序可以用于疫苗接种策略,包括给药编码抗原的pDNA载体或给药抗原本身。通过不同的给药途径给药含CpG的脂丛可以抑制**生长。这些结果来源于使用表达促炎细胞因子(如IL-12)的转基因或甚至不含外源转基因的载体的研究。**的生长抑制似乎是由CpG基序引起的,因为这些序列的甲基化否定了这种作用。虽然有***效果,但含CpG基序对**生长的抑制的确切性质尚不清楚。产生的细胞因子对肿瘤细胞和**脉管系统都有多重作用。一...
纳米颗粒的尺寸很小,但它们比其他颗粒具有更大的粘附表面,同时具有高稳定性。正因为如此,它们能够成功地穿过细胞膜,进入细胞,并与自然发生的细胞内途径结合,具有将特定颗粒带到预定目标位置的***准确性。由于纳米颗粒在细胞内运输和保护化合物方面具有巨大的潜力,可以避免酶的消化或储存在核内体中,因此纳米颗粒作为细胞过程成像的工具,作为将药物携带到细胞内的各种系统的一部分,或**终用于基因传递。纳米颗粒通过官能团和非共价键之间的特异性和非特异性键与核酸结合的特性类似于体内DNA和抑制蛋白之间的自然结合。在细胞内运输外源DNA的效率受到两个主要因素的限制:内吞作用,穿过细胞膜的方式,或适当的细胞受体***...
脂质复合物(CLNACs)通过网格蛋白参与的内吞作用进入细胞,并被困在核内小体中,从这些囊泡结构中释放出来,进入核周区域,***进入细胞核。内吞作用在一定程度上取决于脂质体载体的物理化学性质。Friend和同事描述了可能由脂质体与核膜融合而形成的囊泡和网状核内膜。**近有研究表明,很大一部分从核内体释放到细胞质质的质粒由于与细胞质中的大离子凝聚剂结合而失去活性。这可能解释了脂质转染所观察到的低且可变的转染率。虽然这些脂质载体从细胞外部到细胞核的路径尚未完全确定,但核酸能够产生其效果本身就是一项惊人的壮举。至少对于质粒而言,较小的结构体比较大的质粒具有更高的转染率。核酸外排,虽然不是常见的报道,...
**近一项与抗血管生成基因传递高度相关的发现是,阳离子脂质体(CLs)选择性地靶向**的血管系统。阴离子或电中性脂质体没有发现这种作用。Campbell和他的同事[95]发现,与电中性脂质体相比,使用CLs在**血管内皮细胞(VECs)中积累更多,CLs通过添加5mol%聚乙二醇来稳定。在两种人类**类型(LS174T和MCAIV)和两个位置(颅窗和背侧皮肤褶腔)中发现了**VECs的选择性递送。**血管中囊泡的分布是不均匀的,这可能与该技术是否足以根除足够数量的**VECs以实现**消退反应有关。有趣的是,注射后24小时,脂质体上50%的摩尔电荷***增加了小鼠肺部的积聚。南京星叶生物正是利...
**近一项与抗血管生成基因传递高度相关的发现是,阳离子脂质体(CLs)选择性地靶向**的血管系统。阴离子或电中性脂质体没有发现这种作用。Campbell和他的同事[95]发现,与电中性脂质体相比,使用CLs在**血管内皮细胞(VECs)中积累更多,CLs通过添加5mol%聚乙二醇来稳定。在两种人类**类型(LS174T和MCAIV)和两个位置(颅窗和背侧皮肤褶腔)中发现了**VECs的选择性递送。**血管中囊泡的分布是不均匀的,这可能与该技术是否足以根除足够数量的**VECs以实现**消退反应有关。有趣的是,注射后24小时,脂质体上50%的摩尔电荷***增加了小鼠肺部的积聚。是由非离子核酸与阳...
评估转染效率至关重要,特别是在需要高转染效率以保证特定下游靶标转录后调控的功能研究中。可以选择多种策略来评估转染效率。实时聚合酶链反应(qPCR)是一种通过直接测量特定外源蛋白表达水平来评估转染效率的定量方法。细胞内核酸或其他可能受到外源核酸(如miRNAs)影响的细胞内核酸。在瞬时转染的情况下,每次转染后都应进行qPCR,以确保良好的转染效率,然后再进行下游实验。与质粒报告系统共转染是另一种策略,可以通过表达特定的报告蛋白(如荧光素酶或β-半乳糖苷酶)来评估转染效率。采用小RNA荧光素酶报告系统以干扰(RNAi)研究为例,miRNA转染成功的标志是荧光素酶活性下调,这是由于miRNA与转录的...
纳米颗粒在疫苗递送中往往表现出***的佐剂作用。阳离子聚合物,包括PEI、聚赖氨酸、阳离子葡聚糖和阳离子明胶,已经有报道显示出对Th1反应的强烈刺激,其特征是诱导CD4(+)T细胞增殖和th1相关细胞因子的分泌。此外,阳离子聚合物强烈抑制LPS诱导的巨噬细胞分泌TNF-α。阳离子聚合物的刺激能力与其阳离子化程度有关,阳离子聚合物与阴离子聚合物的中和可以完全消除刺激作用。聚合物的分子量也会影响其刺激能力,分子越大意味着刺激能力越大。小RNA和质粒DNA的共转染可用于评估转染效率。mRNA转染试剂靠谱**近一项与抗血管生成基因传递高度相关的发现是,阳离子脂质体(CLs)选择性地靶向**的血管系统。...
作为一般指导原则,建议使用早期传代的细胞以获得良好的转染效率,特别是涉及原代或干细胞的转染。另一个有趣的观察结果是,37℃是可以帮助原代细胞达到更高转染效率的比较好培养温度。这种现象可能是因为37摄氏度是哺乳动物细胞的比较好培养温度。同时,在转染原代细胞时,化学转染似乎不如病毒和物理转染有吸引力,尤其是在人类原代干细胞中。当在相似条件下使用相同的转染试剂进行转染时,细胞系的来源(如人类与动物细胞系)也可能有助于不同程度的效率。在一项涉及转染人类和大鼠平滑肌细胞的研究中,大多数转染试剂在转染大鼠平滑肌细胞(α-10SMCs)方面的效率高于转染人主动脉平滑肌细胞(HASMCs)。常用的物理/机械转...
在腺病毒载体或脂质体的全身递送后,转基因表达相对短暂。静脉注射脂丛的肺表达比给药后第1天和第2天观察到的比较大表达量每周减少约1log。造成这种现象的机制可能有以下几种:(a)产生针对外源基因产物的新***抗体,(b)细胞因子介导的启动子关闭,(c)通过凋亡、先天或适应性免疫反应根除表达细胞以及(d)表达基因的细胞因细胞凋亡而减少是导致表达减少。这些机制具有重要意义,因为不可能重复给药,而且转基因净表达会随着时间的推移而减少。尽管通过中和或消除细胞因子的产生可以提高肺中的基因表达水平。静脉给药引起的毒性可能是由于小鼠转氨酶水平的增加,在相同剂量下,小鼠肝脏出现组织病理学病变,但肺部没有不良反应...
影响物理转染或机械转染效率的因素在很大程度上取决于这些方法的基本原理。例如,电穿孔技术依赖于电场来增加宿主细胞膜的通透性,以内化外来核酸。因此,电穿孔过程中的电压和持续时间是决定电穿孔成功与否的重要因素。施加高压的长时间电穿孔可能会导致细胞损伤并降低转染效率。通过增加电脉冲的数量也可以提高电转染效率,但这可能会降低细胞活力。另一方面,电转染效率取决于所使用的细胞类型,每当要电转染一种新的细胞类型时,应优化电穿孔条件。一些细胞如T淋巴细胞,即使在标准的电穿孔条件下也可能转染不良,而电转染成纤维细胞通常可以产生良好的转染结果。电穿孔缓冲液的组成是影响转染效率的另一个关键参数。据报道,电穿孔缓冲液中...
由于CRISPR/Cas的发现,基因组编辑领域经历了一场**。细菌免疫系统的CRIPSR/Cas成分导致全基因组双链DNA断裂,并通过内部DNA修复过程促进基因编辑。有研究指出,阳离子聚合物聚乙二胺-环糊精(PC)有助于编码Cas9和sgRNA的质粒的有效递送。当大质粒通过PC传递时,它们可以以高N/P比聚结并包裹质粒;这有效地编辑了两个基因组位点:血红蛋白亚基β(19.1%)和菱形5同源物1(RHBDF1(7.0%))。研究人员开发了巨噬细胞特异性启动子驱动的Cas9表达质粒(pM458和pM330),并将其包裹在阳离子脂质辅助PEG-b-PLGA纳米颗粒中,以解决无法在靶组织和细胞中进行精...
纳米颗粒在疫苗递送中往往表现出***的佐剂作用。阳离子聚合物,包括PEI、聚赖氨酸、阳离子葡聚糖和阳离子明胶,已经有报道显示出对Th1反应的强烈刺激,其特征是诱导CD4(+)T细胞增殖和th1相关细胞因子的分泌。此外,阳离子聚合物强烈抑制LPS诱导的巨噬细胞分泌TNF-α。阳离子聚合物的刺激能力与其阳离子化程度有关,阳离子聚合物与阴离子聚合物的中和可以完全消除刺激作用。聚合物的分子量也会影响其刺激能力,分子越大意味着刺激能力越大。PHP是由天然来源的羟基脯氨酸(如胶原蛋白、明胶和其他蛋白质)制成的,是一个用作基因载体的聚酯。青岛转染试剂疫苗为了在体外和体内可重复地传递基因和siRNA,含有核酸...