ESPI:动态全场测量的先锋ESPI利用激光散斑的随机性作为信息载体,通过双曝光或时间序列干涉图处理,提取变形引起的相位变化。其独特优势在于无需制备光栅或标记点,适用于粗糙表面与动态过程测量。在航空航天领域,ESPI已用于检测飞机蒙皮在气动载荷下的振动模态与疲劳裂纹萌生。云纹干涉术:高灵敏度与高空间分辨率的平衡云纹干涉术通过交叉光栅衍射产生高频云纹条纹,其灵敏度可达亚微米级,空间分辨率优于10线对/毫米。该技术特别适用于金属材料塑性变形、复合材料界面脱粘等微区应变分析。例如,在碳纤维复合材料层压板测试中,云纹干涉术可清晰捕捉层间剪切应变集中现象,为结构优化提供数据支撑。振弦式应变测量传感器研究起源于20世纪30年代。西安全场三维数字图像相关测量装置

全息散斑干涉术:理论奠基与实验室验证全息散斑干涉术通过记录物体变形前后的全息图,利用干涉条纹提取位移信息。该技术理论上可实现波长量级的测量精度,但对防振平台、激光相干性等实验条件要求严苛,难以推广至工业现场。数字散斑相关法:计算光学驱动的工程化突破数字散斑相关法(即DIC的前身)通过数字图像处理替代全息记录,降低了系统复杂度。其关键创新在于引入亚像素位移搜索算法(如牛顿-拉夫逊迭代法),使测量精度突破像素级限制。现代DIC系统结合蓝光LED光源与高分辨率工业相机,在室温条件下即可实现0.01με(微应变)的测量精度,满足工程测试需求。三维全场数字图像相关技术应变测量装置振弦式应变测量传感器具有较强的抗干扰能力的优点。

光学非接触应变测量技术的广泛应用,正在重塑多个关键行业的研发与生产模式。研索仪器凭借其完善的产品体系与专业的技术服务,已在航空航天、汽车工程、土木工程、新能源等领域积累了大量案例,成为行业技术升级的重要推动者。在航空航天领域,安全性与轻量化是永恒的追求,研索仪器的测量技术为这一目标提供了精确保障。其 isi-sys 激光无损检测系统采用 Shearography/ESPI 技术,可对复合材料结构进行非破坏性强度检测,识别内部缺陷与分层损伤,无需拆解即可完成飞行器结构的安全评估。在飞机风洞试验中,VIC-3D 系统可实时测量不同攻角、风速条件下机翼的动态变形,获取关键部位的应变分布与振动特性,为机翼结构优化提供数据支撑。在火箭发动机涡轮叶片测试中,极端环境测量系统能够模拟高温高压工况,监测叶片在工作状态下的变形情况,确保发动机运行的可靠性。
在材料科学与工程测试领域,应变测量是评估材料力学性能、优化结构设计的关键环节。传统接触式测量方法依赖应变片、引伸计等器件与被测物体直接接触,不仅易干扰测试状态、破坏样品完整性,更难以捕捉全场变形信息。随着工业制造向高精度、复杂化升级,光学非接触应变测量技术应运而生,成为打破传统局限的变革性解决方案。研索仪器科技(上海)有限公司(ACQTEC)作为该领域的领航者,以数字图像相关(DIC)技术为关键,构建起覆盖多尺度、多场景的测量体系,为科研与工业领域提供精确可靠的测试支撑。三维应变测量技术对于塑性材料研究来说是非常重要的工具。

光学非接触应变测量:技术原理、应用场景与江浙沪供应商推荐光学非接触应变测量技术是通过光学成像、激光干涉、数字图像相关(DIC)等原理,在不接触被测物体的前提下,测量材料或结构在受力、温度变化、振动等工况下的形变、应变及位移数据的无损检测技术。其优势在于无接触干扰、高精度、大范围测量、适用于复杂工况,应用于航空航天、汽车制造、土木工程、材料研发、电子电器等领域。数字图像相关法(DIC)通过拍摄物体表面散斑图像,对比变形前后的像素位移,计算应变 / 位移。研索仪器科技光学非接触应变测量,抗干扰能力强,复杂环境稳定测量。贵州全场三维数字图像相关技术应变与运动测量系统
研索仪器科技光学非接触应变测量,适配多种材料,满足多元测量需求。西安全场三维数字图像相关测量装置
在行业应用方面,研索仪器将聚焦国家战略需求,重点发力新能源、制造、生物医药等新兴领域。在新能源领域,针对氢能储运设备、光伏材料等新型产品的测试需求,开发测量解决方案;在制造领域,为半导体设备、精密仪器等提供微纳尺度测量服务;在生物医药领域,开发适用于人体组织、医疗植入物的测量系统。同时,公司将积极拓展工业在线检测市场,推动光学非接触测量技术从实验室走向生产现场,实现产品质量的实时监测与控制,助力制造业高质量发展。西安全场三维数字图像相关测量装置