静电陀螺仪又称电浮陀螺。在金属球形空心转子的周围装有均匀分布的高压电极,对转子形成静电场,用静电力支承高速旋转的转子。这种方式属于球形支承,转子不只能绕自转轴旋转,同时也能绕垂直于自转轴的任何方向转动,故属自由转子陀螺仪类型。静电场只有吸力,转子离电极越近吸力就越大,这就使转子处于不稳定状态。用一套支承电路改变转子所受的力,可使转子保持在中心位置。静电陀螺仪采用非接触支承,不存在摩擦,所以精度很高,漂移率低达10~10度/时。它不能承受较大的冲击和振动。它的缺点是结构和制造工艺复杂,成本较高。陀螺仪分为机械式、激光式和光纤式三大类,各自具有独特的优势和局限性。湖北陀螺仪

陀螺仪在照相/摄相领域的应用,当我们拍视频或拍照时,有没有相过,通过一种装置,保证你的“相机”固定在同一位置,无论你的手怎么歪斜,身体怎么抖,他都能保持手机的相对稳定。稳拍器的整体大致框架如下图所示,其中橘黄色部分就是加速度和陀螺仪传感器工作部分。它将“摄像设备”的姿态反馈给中心MCU处理单元,中间MCU单元根据检测到的“摄像设备”的姿态和运动情况,去控制电机做相应的动作,电机动作使“摄像设备”保持稳雷打不动的状态,这样拍出来的照片才更清楚,录制的录像才更稳定。湖北陀螺仪陀螺仪可以用于无人机的姿态控制和导航,提供准确的飞行数据。

陀螺仪的发展历程:机械式 → 小型芯片状。1850年,法国物理学家,莱昂·傅科,发现高速转动中的转子由于惯性作用,其旋转轴永远指向固定方向,故用希腊字gyro(旋转)和skopein(看)来命名这种设备,即陀螺仪(gyro scope),并利用陀螺仪验证了地球的自转运动。1908年,德国科学家,赫尔曼·安许茨·肯普费,设计一种单转子摆式陀螺,该系统可以凭借重力力矩自动寻找方向,解决了舰船导航的问题。二战期间,德国,利用陀螺仪,为V-2火箭装备了惯性制导系统,实现陀螺仪技术在导弹制导领域的初次应用。使用陀螺仪确定方向和角速度,使用加速度计计算加速度,计算得出飞弹飞行的距离与路线,同时控制飞行姿态,以争取让飞弹落到想去的地方
速率陀螺仪,用以直接测定运载器角速率的二自由度陀螺装置。把均衡陀螺仪的外环固定在运载器上并令内环轴垂直于要测量角速率的轴。当运载器连同外环以角速度绕测量轴旋进时,陀螺力矩将迫使内环连同转子一起相对运载器旋进。陀螺仪中有弹簧限制这个相对旋进,而内环的旋进角正比于弹簧的变形量。由平衡时的内环旋进角即可求得陀螺力矩和运载器的角速率。积分陀螺仪与速率陀螺仪的不同处只在于用线性阻尼器代替弹簧约束。当运载器作任意变速转动时,积分陀螺仪的输出量是绕测量轴的转角(即角速度的积分)。以上两种陀螺仪在远距离测量系统或自动控制、惯性导航平台中使用较多。激光陀螺仪则利用光的干涉效应测量角速度,具有高精度和长期稳定性,在惯性导航和高精度测量中应用普遍。

当陀螺仪应用到车载导航上它的作用体现在:陀螺仪在上立交桥时更灵敏准确的识别,民用GPS的精度是无法识别上没上立交桥的,而陀螺仪却可测出车子是否向上移动了,从而能让导航软件及时的修改导航路线。依靠GPS卫星的信号导航和陀螺仪的惯性导航,有效提高了导航精确度,即使在失去GPS信号后,系统仍能通过自主推算来继续导航,为车主提供准确的行驶指示。且而陀螺仪能够在方向和速度改变的瞬间即时测出,从而能让导航软件及时的修改导航路线。陀螺仪的主要作用是测量和维持物体的角速度和姿态,为导航、制导等领域提供支持。深圳盾构导向惯性导航系统
陀螺仪的制造材料和技术不断发展,使其在精度、尺寸、重量等方面不断突破。湖北陀螺仪
陀螺仪是智能手机不可或缺的一个重要部件,没有陀螺仪,那么智能手机的多数功能基本无法实现,因为很多功能都需要精确了解手机的具体姿态。虽说手机少不了陀螺仪,但怎么看,我们的手机里都不像是装备了这个东西,因为手机内部的空间实在是有限,似乎没有安装这个东西的地方。事实上如果我们将手机拆开,确实也看不到陀螺仪,这是怎么回事呢?手机中的确安装有陀螺仪,但是手机中的陀螺仪与刚才我们所讲的陀螺仪并不相同,它虽然也叫做陀螺仪,但与陀螺就没有什么关系了,从外观上来看,它就是一个边长只有几毫米的黑色小方块。湖北陀螺仪