陀螺仪(来自古希腊语的γῦροςgûros "圆形或者旋转" 和σκοπέω skopéō "看到的"),是用于测量或维护方位和角速度的设备。它是一个旋转的轮子或圆盘,其中旋转轴可以不受影响的设定在任何方向。当旋转发生时,根据角动量守恒定律,该轴的方向不受支架倾斜或旋转的影响。还有一些使用其他工作原理的陀螺仪,例如,在电子设备中可以看到的使用微芯片封装的微机电(MEMS)陀螺仪、固态环形激光器、光纤陀螺仪和极其灵敏的量子陀螺仪。随着MEMS技术的成熟,微型陀螺仪逐渐成为市场主流,应用于各种消费电子产品。江西实时惯导

陀螺仪在现代科技中扮演着不可或缺的角色。从导航定位到稳定控制,从虚拟现实到科学研究,陀螺仪的应用范围普遍且重要。随着科技的不断发展,陀螺仪的性能和应用也将得到进一步提升和拓展。惯性导航系统就是陀螺仪的一种应用。例如,哈勃望远镜,或用在水下潜艇的钢制船体内。由于陀螺仪所具有的精度,其也被用于维护隧道采矿方向的回转经纬仪。[4] 陀螺仪还可用于制作陀螺罗盘,用以补充或替代普通载具、船舶、飞机或空间飞船中使用的磁罗盘,或者辅助自行车、摩托车和船舶的稳定性,同时也可以用作惯性导航系统的一部分。微机电陀螺仪在智能手机等电子消费品中很受欢迎。江西实时惯导陀螺仪的工作原理基于角动量守恒定律,通过测量旋转部件的惯性变化来计算物体的角度和方向。

陀螺仪器较早是用于航海导航,但随着科学技术的发展,它在航空和航天事业中也得到普遍的应用。陀螺仪器不只可以作为指示仪表,而更重要的是它可以作为自动控制系统中的一个敏感元件,即可作为信号传感器。根据需要,陀螺仪器能提供准确的方位、水平、位置、速度和加速度等信号,以便驾驶员或用自动导航仪来控制飞机、舰船或航天飞机等航行体按一定的航线飞行,而在导弹、卫星运载器或空间探测火箭等航行体的制导中,则直接利用这些信号完成航行体的姿态控制和轨道控制。
明白了科里奥利力,就可以来说说微机电陀螺仪了。微机电陀螺仪内的主体就是一个质量块,这个质量块会在交替变化的电压作用下做来回振荡运动,这种运动本质上就是一种直线运动,当陀螺仪开始转动时,受科里奥利力的影响,这个水平振荡的陀螺仪就会发生偏转,也就是说此时它不只有水平运动,还有垂直运动。运动方式的改变会使电容值发生微小的变化,而通过感知这种微小的变化就可以了解物体姿态的变化。当然,单个微机电陀螺仪只能感知一个方向上的姿态变化,但在手机中装上两三个,就能够全方面准确识别手机的姿态,毕竟这个东西很小,也不占什么地方。光纤陀螺仪利用光纤环路的Sagnac效应,通过检测相位差来获得角速度信息。

高速转动的刚体被大家称为陀螺,利用支撑架增加一个或两个自由度制作而成的陀螺仪具有特殊的性质:定轴性、进动性,利用这两个性质根据牛顿定律可以计算出某一方向的角速度。惯性器件一:陀螺仪敏感角速度原理-有驾定轴性:高速运转的刚体在不受外力矩的作用下旋转轴方向相对惯性空间不变。进动性:陀螺仪转子高速转动时,陀螺仪内环轴方向受力后,陀螺主轴绕外环轴转动;外环轴方向受力后,陀螺主轴绕内环转动。这与转子静止时不同。陀螺仪可以用于智能手机和游戏设备的姿态感应和运动控制,提供更好的用户体验。江西实时惯导
陀螺仪可以用于无人机的姿态控制和导航,提供准确的飞行数据。江西实时惯导
挠性陀螺仪,转子装在弹性支承装置上的陀螺仪。在挠性陀螺仪中应用较广的是动力调谐挠性陀螺仪。它由内挠性杆、外挠性杆、平衡环、转子、驱动轴和电机等组成。它靠平衡环扭摆运动时产生的动力反作用力矩(陀螺力矩)来平衡挠性杆支承产生的弹性力矩,从而使转子成为一个无约束的自由转子,这种平衡就是调谐。挠性陀螺仪是60年代迅速发展起来的惯性元件,它因结构简单、精度高(与液浮陀螺相近)、成本低,在飞机和导弹上得到了普遍应用。江西实时惯导