汽车IGBT模块测试标准下功率循环和温度循环作为表示的耐久测试,要求极为严格,例如功率循环次数可能从几万次到十万次不等。主要目的是测试键合线、焊接层等机械连接层的耐久情况。测试时的失效机理主要是,芯片、键合线、DBC、焊料等的热膨胀系数不一致,导致键合线脱落、断裂,芯片焊层分离,以及焊料老化等。随着国内新能源汽车产业的快速发展,产业链上游大有逐步完成国产替代,甚至带领世界的趋势,诸如整车品牌、动力电池、电池材料等等已经走得比较靠前,而汽车电控IGBT模块是新能源汽车主要的功率器件。IGBT自动化设备的动态测试有助于提前发现潜在的故障和不良。非标DBC底板贴装机现货直发
创新性的横向弹簧针端子和Mo柱互连解决了现有标准化封装在功率密度和热性能方面的不足,提供芯片顶部和底部的热通路,从而提高散热能力。采用烧结银将芯片连接在两个高导热AlN陶瓷DBA基板之间,通过Mo柱将芯片的源极和栅极连接到上基板,减轻了热机械应力,改善了可靠性。Cu柱支撑封装两侧的基板,并为横向弹簧针端子提供安装表面,横向弹簧针穿过3D打印的外壳将模块连接到高压PCB母线。外壳和弹簧针端子之间采用硅胶垫圈密封,防止密封剂泄漏。将器件安装在两个PCB母线之间,可以实现高密度集成和高度模块化。江西无功老化测试设备行价IGBT自动化设备通过动态测试可以提高产品的可靠性和寿命。
微通道散热器采用低温共烧陶瓷(LTCC)制成,由于press-pack封装没有内部绝缘,热沉的引入增大了回路的寄生电感,上下两侧的微通道散热器设计可提供足够的散热能力,同时外形上厚度较薄可降低功率回路的电感。微通道散热器的电气回路和冷却回路分离,可以使用非介电流体进行冷却。虽然LTCC的导热性不如金属和AlN陶瓷好,但仿真结果表明,在总热耗散为60W,采用LTCC微通道热沉水冷散热时,SiC芯片至大结温只为85℃,并联芯片间的至大结温差小于0.9℃,并联芯片的结温分布比较均匀。结到热沉热阻为0.2℃/W,热沉至高温度为73℃,热沉到冷却剂的热阻为0.8℃/W。
IGBR是具有防潮功能的大功率背接触式电阻器,可实现超高额定功率,具有适用于混合组件的微型外壳尺寸。IGBR电阻器具有高额定功率、单一引线接合组装的特性,外壳尺寸从0202到0808不等。典型应用于功率转换器(第三代SiCMOSFET)的栅极电阻器、大功率应用和替代能源等领域。IGBR是节省电源模块空间的完美部件。为什么IGBT模块中需要栅极电阻器?1.通过限制电流影响开关速度;2.限制栅极驱动路径中的噪声;3.限制寄生电感和电容;4.限制对栅极进行充电和放电的电流;5.限制峰值栅极电流以保护驱动器输出级;6.耗散栅极回路中的功率;7.影响开关损耗并防止栅极振荡。动态测试IGBT自动化设备可分析和优化器件在过温和过压情况下的性能。
采用低温银烧结键合(LTB)技术将芯片对称布置在金属基复合(MMC)基板的中心安装孔四周,使模块与热沉间保持良好的电气接触和热接触。芯片正面的功率电极通过高熔点焊料连接到上部MMC基板,两个基板与芯片两个表面紧紧接触,芯片的两侧(芯片烧结层-MMC,芯片层焊料-MMC)均成为散热路径。虽然芯片正面的功率电极取消了键合线,但栅极仍需采用键合线连接。使用硅橡胶成型,使模块易于集成,同时满足爬电和间隙距离要求。该封装技术非常适合于需要冷却的高功耗器件。IGBT自动化设备通过老化检验,能够验证产品的可靠性和稳定性。一体化真空炉
在自动贴片过程中,IGBT自动化设备能够高效地完成芯片的贴装工作。非标DBC底板贴装机现货直发
TO247单管并联,市场上也有少量使用TO247单管封装的电控系统方案。使用单管并联方案的优势主要有两点:①单管方案可以实现灵活的线路设计,需要多大的电流就用相应的单管并联就好了,所以成本也有一定优势;②寄生电感问题比IGBT模块好解决。但是使用单管并联也存在一些待解决的难点:①每个并联单管之间均流和平衡比较困难,一致性比较难得到保障,例如实现同时的开断,相同的电流、温度等;②客户的系统设计、工艺难度非常大;③接口比较多,对产线的要求很高。非标DBC底板贴装机现货直发