功率器件封装结构散热设计原则:从器件散热的角度,封装结构设计应当遵循散热路径低热阻、尽可能多散热路径和传热路径上的接触面积尽可能大的原则。这就要求在设计之初,就应考虑到封装材料的选择、散热路径的设计、散热路径上各部件接触界面的面积等。但这些不可避免的增加了封装设计和工艺实现的难度,一种功率器件的封装实践往往是考虑多种因素的折中。从目前国内外对于功率器件的研究和开发现状来看,具备耐高温、多散热路径和大面积连接的封装特征是未来功率器件封装的发展趋势,也是满足未来高压、大功率器件工作性能要求的必然选择。自动化设备在IGBT模块的封装中提高了生产工艺的稳定性。广东IGBT自动化设备行价
目前商用的SiC肖特基二极管受限于传统塑料封装形式,其额定工作结温上限只能达到175℃。现有SiC器件的封装仍主要采用焊接封装,考虑到芯片绝缘和隔离外界环境的目的,封装模块内部灌封有完全覆盖芯片表面的热导率较低的硅凝胶,硅凝胶上层为空气,该封装形式也使得这种从上向下的热传导成为芯片产生热量的散热通道。为了充分利用SiC器件高结温的优势,发挥SiC器件的潜力,开发新的便于芯片散热的封装结构,为芯片封装提供高效的散热路径,达到降低芯片结温,提升器件整体性能的目的,非常有必要改进现有的传统功率器件封装技术,开发新型功率器件封装结构。由此,通过增加封装器件的散热路径来提高器件散热能力的方法也就很自然的被提出。非标IGBT自动化设备怎么样IGBT自动化设备为动态测试提供了可靠的电源和载荷控制。
使用岛津拉力机分别测试四种金属化方法制备的覆铜AlN陶瓷基板的剥离强度,使用冷热冲击试验箱测试覆铜基板可靠性,对基板进行功率循环测试和热阻测试。AlN陶瓷金属化铜层与基板的结合力大小决定了其在实际应用过程中的可靠与否,是陶瓷金属化基板的中心性能指标。本文借鉴《微电子技术用贵金属浆料测试方法附着力测定》中的方法,通过剥离强度测试金属化层的附着力。可得AMB金属化陶瓷基板陶瓷与金属化层结合力较好,剥离强度为25Mpa,接下来是DBC和TFC金属化陶瓷基板,剥离强度分别为21Mpa和15Mpa,更差的是DPC金属化基板,剥离强度只为13Mpa。
半导体技术的进步极大地促进了电力电子器件的发展和应用。过去几十年里,在摩尔定律的“魔咒”下,半导体芯片尺寸不断减小,使得在同样的空间体积内可以集成更多的芯片,实现更多的功能和更强大的处理能力,为进一步提高功率密度提供了可能。另一方面,芯片尺寸的缩小也增加了芯片散热热阻,降低了热容,使得芯片结温升高,结温波动更加明显,影响功率模块的可靠性。功率半导体作为电力电子系统的主要组成部分,已经普遍应用到生活、交通、电力、工业控制、航空航天、舰船等领域。IGBT自动化设备通过动态测试可以准确评估器件的响应速度和可靠性。
针对氮化铝陶瓷基板的IGBT应用展开分析,着重对不同金属化方法制备的覆铜AlN基板进行可靠性进行研究。通过对比厚膜法、薄膜法、直接覆铜法和活性金属钎焊法金属化AlN基板的剥离强度、热循环、功率循环,分析结果可知,活性金属钎焊法制备的AlN覆铜基板优于其他工艺基板,剥离强度25MPa,(-40~150)℃热循环达到1500次,能耐1200A/3.3kV功率循环测试7万次,满足IGBT模块对陶瓷基板可靠性需求。在电力电子的应用中,大功率电力电子器件IGBT是实现能源控制与转换的中心,普遍应用于高速铁路、智能电网、电动汽车与新能源装备等领域。随着能量密度提高,功率器件对陶瓷覆铜基板的散热能力和可靠性的要求越来越高。功率端子键合环节中,IGBT自动化设备能够实现端子的稳固连接。重庆专业真空封盖自动线
自动化设备的使用提高了IGBT模块封装工艺的一致性和可靠性。广东IGBT自动化设备行价
伴随着电网规模越来越大,电压等级越来越高,电力系统朝着更加智能化方向发展,高压、大功率和高开关速度要求功率器件承担的功能也更加多样化,工作环境更加恶劣,在此背景下,除芯片自身需具有较高的处理能力外,器件封装结构已成为限制器件整体性能的关键。而传统的封装或受到材料性能的限制或因其自身结构设计不能适应高压大电流高开关速度应用所带来的高温和高散热要求。为保证器件在高压高功率工况下的安全稳定运行,开发结构紧凑、设计简单和高效散热的新型功率器件,成为未来电力系统用功率器件发展的必然要求。广东IGBT自动化设备行价