功率器件封装结构散热设计原则:从器件散热的角度,封装结构设计应当遵循散热路径低热阻、尽可能多散热路径和传热路径上的接触面积尽可能大的原则。这就要求在设计之初,就应考虑到封装材料的选择、散热路径的设计、散热路径上各部件接触界面的面积等。但这些不可避免的增加了封装设计和工艺实现的难度,一种功率器件的封装实践往往是考虑多种因素的折中。从目前国内外对于功率器件的研究和开发现状来看,具备耐高温、多散热路径和大面积连接的封装特征是未来功率器件封装的发展趋势,也是满足未来高压、大功率器件工作性能要求的必然选择。通过自动化设备,IGBT模块的封装过程更加高效、准确。四川动态测试超声波键合机
直接导线键合结构(DLB):直接导线键合结构至大的特点就是利用焊料,将铜导线与芯片表面直接连接在一起,相对引线键合技术,该技术使用的铜导线可有效降低寄生电感,同时由于铜导线与芯片表面互连面积大,还可以提高互连可靠性。三菱公司利用该结构开发的IGBT模块,相比引线键合模块内部电感降低至57%,内部引线电阻减小一半。SKiN模块结构也是一种无引线键合的结构,它采用了双层柔软的印刷线路板同时用于连接MOSFET和用作电流通路。为进一步降低寄生效应,使用多层衬底的2.5D和3D模块封装结构被开发出来用于功率芯片之间或者功率芯片与驱动电路之间的互连。甘肃专业超声波键合机自动化设备的使用提高了IGBT模块封装工艺的一致性和可靠性。
IGBT作为重要的电力电子的中心器件,其可靠性是决定整个装置安全运行的重要因素。由于IGBT采取了叠层封装技术,该技术不但提高了封装密度,同时也缩短了芯片之间导线的互连长度,从而提高了器件的运行速率。传统Si基功率模块封装存在寄生参数过高,散热效率差的问题,这主要是由于传统封装采用了引线键合和单边散热技术,针对这两大问题,SiC功率模块封装在结构上采用了无引线互连(wireless interconnection)和双面散热(double-side cooling)技术,同时选用了导热系数更好的衬底材料,并尝试在模块结构中集成去耦电容、温度/电流传感器以及驱动电路等,研发出了多种不同的模块封装技术。
封装结构散热类型:以传统半导体Si芯片和单面散热封装为表示的常规封装器件获得了良好的发展和应用,技术上发展相对比较成熟。但随着对更高电压等级更高功率密度需求的不断增长,传统应用于Si器件的封装技术已不能够满足现有发展和应用的要,目前传统Si基芯片的至高结温不超过175℃,温度循环的范围至大不超过200℃。相比Si器件,SiC器件在导通损耗、开关频率和具有高温运行能力方面具有明显的优势,至高理论工作结温更是高达600℃。若采用现有Si基封装技术,那么以SiC为表示的宽禁带半导体将无法充分发挥其高温运行的能力。动态测试IGBT自动化设备可用于验证器件的可控性和稳定性。
采用低温银烧结键合(LTB)技术将芯片对称布置在金属基复合(MMC)基板的中心安装孔四周,使模块与热沉间保持良好的电气接触和热接触。芯片正面的功率电极通过高熔点焊料连接到上部MMC基板,两个基板与芯片两个表面紧紧接触,芯片的两侧(芯片烧结层-MMC,芯片层焊料-MMC)均成为散热路径。虽然芯片正面的功率电极取消了键合线,但栅极仍需采用键合线连接。使用硅橡胶成型,使模块易于集成,同时满足爬电和间隙距离要求。该封装技术非常适合于需要冷却的高功耗器件。超声波清洗步骤中,IGBT自动化设备能够有效去除焊接后的污染物,保证封装质量。高精度超声波键合机生产
IGBT自动化设备在封装过程中减少了人工操作的错误风险。四川动态测试超声波键合机
IGBT模块究竟如何工作?在电控模块中,IGBT模块是逆变器的中心部件,总结其工作原理:通过非通即断的半导体特性,不考虑过渡过程和寄生效应,我们将单个IGBT芯片看做一个理想的开关。我们在模块内部搭建起若干个IGBT芯片单元的并串联结构,当直流电通过模块时,通过不同开关组合的快速开断,来改变电流的流出方向和频率,从而输出得到我们想要的交流电。IGBT模块实物长啥样?IGBT模块的标准封装形式是一个扁平的类长方体,下图为HP1模块的正上方视角,外面白色的都是塑料外壳,底部是导热散热的金属底板(一般是铜材料)。四川动态测试超声波键合机