H13作为应用较为广且具有代表性的热作模具钢,在高温下因拥有较高的热硬性、冲击韧性、耐磨性以及切削加工性,所以通常应用于热挤压和压铸模具的制造。由于H13模具钢在服役过程中表面会受到一定程度的磨损与腐蚀,所以利用表面技术来提高H13模具钢的性能,延长使用寿命具有重要的意义。经过工研所QPQ处理后,表面硬度增加,由基体的490HV增加到1100HV,且磨损失重量不到基体的十分之一,造成该现象的原因是经过QPQ工艺处理后,CrN和Fe2~3N等高硬度、高耐磨氮化物以及低摩擦系数Fe3O4形成于H13模具钢表面,使其表现出良好的抗磨损性能。QPQ表面处理可以减少刀具的切削力。表面硬化QPQ替代发黑

通常,我们采用中性盐雾试验来评估零件的防腐蚀性能,这一测试方法能够模拟零件在潮湿、含盐环境中的耐腐蚀表现。在标准盐雾实验环境中,氯化钠作为主要的盐类成分,扮演着至关重要的角色。氯化钠是一种强电解质,具有极强的吸湿性,一旦与水接触,便会迅速且完全地电离为氯离子和钠离子。盐雾对金属材料表面的腐蚀过程,实质上是氯离子发挥其强烈的穿透能力所致。由于氯离子的半径相对较小,它能够轻易地穿透金属表面的氧化层或保护层,进而与内部的金属基体发生电化学反应。这一反应会逐步侵蚀金属,导致金属材料表面的破坏。中性盐雾试验正是通过模拟这种环境,来检测零件在长时间暴露于盐雾中的耐腐蚀性能,从而确保零件在实际使用中的耐久性和可靠性。氮化盐浴QPQ源头厂家QPQ表面处理可以提高刀具的抗疲劳性能,延长刀具的使用寿命。

工研所QPQ处理以后一般情况下工件表面粗糙度都稍有变化,即变得稍粗糙一些,但这种变化对绝大多数机械零件或机械产品来说是比较小的,既不影响使用,也不影响美观,因此一般零件都把QPQ处理技术作为结束的一道工序,即以后不再作任何加工或处理。一般来说零件的原始表面粗糙度值越大,则QPQ处理后表面粗糙度变化越小,反之,零件的原始表面粗糙度值越小,这种影响越大。当工件表面粗糙度大到一定值以后,处理后工件表面粗糙度变化越小,当零件表面粗糙度值达到15μm时,则几乎对表面粗糙度没有影响。
齿轮在各类机械设备中的使用过程中,常常面临着重载荷、高磨损以及高疲劳的严苛服役特性。这些特性要求齿轮材料必须具备良好的高韧性、高耐磨性和高疲劳强度,以确保其长期稳定运行。经过工研所QPQ表面符合处理技术的处理后,齿轮样件的表面会形成一层由氮化物、碳化物及氧化物组成的混合强化层。这一强化层不仅明显提升了零构件的表面硬度、耐磨性和耐蚀性,而且能够保留芯部原有的良好韧性。更为可贵的是,经过QPQ处理的工件几乎不会发生变形,从而确保了齿轮在复杂工况下的高精度和可靠性。QPQ表面处理可以显著提高刀具的切削性能和加工效率。

成都工具研究所的QPQ表面复合处理技术处理的产品具有高硬度、高抗蚀、高耐磨、微变形、无污染等优良特性,可替代发黑、磷化、镀铬、气体渗氮、离子渗氮、渗碳等常规工艺。经由QPQ处理提高了零部件的表面质量和性能,提高了产品的整体质量和竞争力。QPQ处理作为一种成熟的表面处理技术,具有可靠性高、效果稳定等优点。处理过程相对简单,易于控制,适用于批量生产和大规模应用。工研所提供QPQ全套服务,从技术支持到设备提供,亦承接外协加工。QPQ表面处理可以提高刀具的抗疲劳性能。高精度QPQ低温液态氧氮化
QPQ表面处理可以提高刀具的切削效率,降低加工成本。表面硬化QPQ替代发黑
工研所研发的QPQ技术,其工艺温度设定巧妙地低于钢的相变温度,这意味着在处理过程中,金属的内部组织结构不会发生改变,从而避免了组织应力的产生。相较于那些会引发组织转变的常规热处理工艺,如淬火、高频感应淬火以及渗碳淬火,QPQ技术所带来的工件变形要小得多。这一特性使得QPQ技术在处理精密零部件时具有明显的优势。在进行QPQ处理时,为了确保处理效果并减小工件的形状变化,杆轴件或板件必须垂直装卡,以保证处理的均匀性。预热阶段,应缓慢热透工件,必要时还可以采用随炉升温预热的方式,以进一步减小热应力对工件的影响。在氧化工序结束后,为了让工件能够更稳定地定型,可将其冷却到接近室温后再进行清洗。这一系列精细的操作步骤,都是为了确保QPQ处理后的工件能够保持原有的形状精度,满足高精度零部件的制造要求。表面硬化QPQ替代发黑