20世纪40年代后期,生产核燃料的需要促进了萃取的研究开发。现今萃取通用于石油炼制工业,并普遍应用于化学、冶金、食品和原子能等工业。如,萃取已应用于石油馏分的分离和精制,铀、钍、钚的提取和纯化,有色金属、稀有金属、贵重金属的提取和分离,抗细菌素、有机酸、生物碱的提取,以及废水处理等。方法,向待分离溶液(料液)中加入与之不相互溶解(至多是部分互溶)的萃取剂,形成共存的两个液相。利用原溶剂与萃取剂对各组分的溶解度(包括经化学反应后的溶解)的差别,使它们不等同地分配在两液相中,然后通过两液相的分离,实现组分间的分离。液液萃取法由于常用的溶剂具有较高的蒸气压,可以通过蒸发的方法将溶剂除去,以便浓缩这些被测物质。湖南有机物萃取
双水相萃取技术((Two-aqueousphaseextraction,简称ATPS)是指亲水性聚合物水溶液在一定条件下可以形成双水相,由于被分离物在两相中分配不同,便可实现分离"被普遍用于生物化学细胞生物学和生物化工等领域的产品分离和提取"双水相萃取技术设备投资少,操作简单"该类双水相体系多为聚乙二醇-葡萄糖和聚乙二醇-无机盐两种"由于水溶性高聚物难以挥发,使反萃取必不可少,且盐进入反萃取剂中,对随后的分析测定带来很大的影响"另外水溶性高聚物大多黏度较大,不易定量操作,也给后续研究带来麻烦"事实上,普通的能与水互溶的有机溶剂在无机盐的存在下也可生成双水相体系,并已用于血清铜和血浆铬的形态分析"基于与水互溶的有机溶剂和盐水相的双水相萃取体系具有价廉!低毒!较易挥发而无需反萃取和避免使用黏稠水溶性高聚物等特点。合肥溶剂萃取价格用超声波强化超临界流体萃取(SSFE)辣椒中的辣椒素,取得了很好的效果。
有机化合物在有机溶剂中一般比在水中溶解度大。用有机溶剂提取溶解于水的化合物是萃取的典型实例。在萃取时,若在水溶液中加入一定量的电解质(如氯化钠),利用“盐析效应”以降低有机物和萃取溶剂在水溶液中的溶解度,常可提高萃取效果。要把所需要的化合物从溶液中完全萃取出来,通常萃取一次是不够的,必须重复萃取数次。利用分配定律的关系,可以算出经过萃取后化合物的剩余量。利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。经过反复多次萃取,将绝大部分的化合物提取出来。
对于一些水溶性好的有机物,DCM/MeOH=10/1~~5/1,也是不错的萃取体系,极性比较大的萃取体系就是异丙醇/二氯甲烷=6/1,如果这个体系还萃取不出来,那么基本没有办法将小分子从水相从萃取出来了,那就要另想他法了。选择分液漏斗的大小。通常选用125mL或250mL的分液漏斗,较大量的反应(50~100g)可以用500mL或1L的分液漏斗,当然分液漏斗的选择还是要实际操作实际选择,不要选太大也不要太小,太大了萃取溶剂太多,旋蒸起来太耗费时间;太小了萃取太多次,也是费时费力不讨好的。萃取流程:在一定实验条件下,利用CWL50-M型离心萃取机对料液进行离心萃取。
超临界流体萃取是指以超临界流体(见p-V-T关系)为溶剂,从固体或液体中萃取可溶组分的分离操作。超临界流体(SupercriticalFluid,SF)是处于临界温度(Tc)和临界压力(Pc)以上,介于气体和液体之间的流体。任何一种物质都存在三种相态-气相、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。超临界流体具有气体和液体的双重特性。SF的密度和液体相近,粘度与气体相近,但扩散系数约比液体大100倍。由于溶解过程包含分子间的相互作用和扩散作用,因而SF对许多物质有很强的溶解能力。这些特性使得超临界流体成为一种好的萃取剂。而超临界流体萃取,就是利用超临界流体的这一强溶解能力特性,从动、植物中提取各种有效成份,再通过减压将其释放出来的过程。通过萃取,能从固体或液体混合物中提取出所需要的化合物。太原快速溶剂萃取设备
萃取使溶质物质从一种溶剂内转移到另外一种溶剂中的方法。湖南有机物萃取
物理性质粘度:低粘度有利于两相的混合与分层,流动与传质,对萃取有利。对大粘度萃取剂,可加入其它溶剂进行调节。超临界的萃取特点:超临界流体的密度与溶解能力接近于液体,而又保持了气体的传递特性,故传质速率高,可更快达到萃取平衡;操作条件接近临界点,压力、温度的微小变化都可改变超临界流体的密度与溶解能力,故溶质与溶剂的分离容易,费用低;超临界萃取具有萃取和精馏的双重特性,可分离难分离物质;超临界流体一般具有化学性质稳定、无毒无腐蚀性、萃取操作温度不高等特点,故特别适用于医药、食品等工业;但超临界萃取一般在高压下进行,设备投资较大。湖南有机物萃取