优化功率器件散热:汽车电子系统中的功率器件,如功率放大器、电机驱动芯片等,在工作时会产生大量热量。若散热不良,不仅会影响器件性能,还可能因温度过高导致器件工作不稳定,产生额外的电磁干扰。在 EMC 整改中,要优化功率器件的散热设计。采用大面积的散热片,并通过导热硅脂等材料确保功率器件与散热片紧密贴合,提高散热效率。同时,合理规划 PCB 上的散热通道,利用空气对流或强制风冷方式,及时带走热量。良好的散热设计能保证功率器件在正常温度范围内工作,减少因温度问题引发的电磁干扰,提升汽车电子系统的可靠性和稳定性。增加共模电感,提升抗干扰能力。江西线束汽车电子EMC整改实验室

优化车身接地系统:车身接地系统是汽车电子 EMC 整改的关键环节。一个良好的车身接地系统能为各个电子设备提供稳定的接地参考,降低电磁干扰。在整改时,首先要增加接地连接点,确保各电子设备都能就近接地,减少接地回路的长度。例如,在车身不同部位设置多个接地螺栓,方便电子设备连接。其次,对车身接地部位进行清洁和处理,去除氧化层,保证接地连接的良好导电性。同时,优化车身接地网络的布局,使接地电流能均匀分布,避免出现局部电流集中的情况。通过优化车身接地系统,能为汽车电子系统构建稳定、可靠的接地基础,提升整个系统的抗干扰能力。江西RE汽车电子EMC整改周期塑料外壳内侧喷涂导电涂层屏蔽。

合理规划接地线布线:接地线在汽车电子 EMC 整改中起着关键作用,合理规划接地线布线能有效降低接地电阻,减少电磁干扰。首先,要确保接地路径短而直,避免接地线过长或弯曲,因为过长的接地线会增加电阻和电感,影响接地效果。例如,对于汽车电子设备的金属外壳接地。其次,采用多点接地与单点接地相结合的方式。对于低频电路,采用单点接地可避免接地环路产生的干扰;对于高频电路,多点接地能降低接地阻抗,提高高频信号的回流效率。通过合理规划接地线布线,能为汽车电子系统构建稳定、可靠的接地体系,提升其抗干扰能力。
改善 PCB 板材:PCB 板材的特性对汽车电子设备的 EMC 性能有不可忽视的影响。普通 PCB 板材在高频下的介电常数和损耗因子可能不利于电磁屏蔽和信号传输。整改时,可选用具有低介电常数、高玻璃化转变温度(Tg)的高性能板材。低介电常数能减少信号传输过程中的损耗和串扰,高 Tg 值使板材在汽车高温环境下保持良好的电气性能。同时,一些特殊的 PCB 板材还具有一定的电磁屏蔽性能,可降低设备内部电磁辐射泄漏。通过改善 PCB 板材,能从根本上提升汽车电子设备的电磁兼容性,使其更好地适应复杂的电磁环境。将敏感元件远离易接触 ESD 部位。

调整传感器电路:汽车中的各类传感器负责采集各种物理量并转换为电信号。传感器电路易受到外界电磁干扰,导致信号失真,影响汽车电子系统的控制精度。在整改时,首先要对传感器的供电电路进行优化,增加滤波环节,确保传感器获得稳定、纯净的电源。对于传感器信号线,采用屏蔽线,并将屏蔽层可靠接地,防止外界电磁干扰耦合到信号线上。同时,在传感器电路中增加信号调理电路,如放大、滤波、整形等,提高传感器信号的抗干扰能力和信噪比。通过调整传感器电路,能保证传感器准确、稳定地输出信号,为汽车电子系统的正常运行提供可靠的数据支持。确保显示器外壳接地稳固良好。山东汽车电子EMC整改实验室
增加电容滤波,滤除高频杂波。江西线束汽车电子EMC整改实验室
背光驱动电路为车载显示器的背光源提供能量,其工作时产生的电磁干扰可能影响显示效果。在整改中,优化背光驱动电路的拓扑结构。采用 PWM 调光方式时,合理选择 PWM 频率,避免与其他电路产生谐波干扰。同时,在驱动电路中增加滤波电感和电容,抑制电源线上的高频纹波和开关噪声。例如,在电感的选择上,选用磁导率高、饱和电流大的电感,以更好地滤除干扰信号。此外,对背光驱动芯片进行合理布局,使其与其他电路保持适当距离,减少电磁耦合。通过优化背光驱动电路,降低其产生的电磁干扰,提高车载显示器的显示质量和稳定性。江西线束汽车电子EMC整改实验室