升级关键芯片:汽车电子系统中的芯片是部件,其抗干扰能力直接影响整体 EMC 性能。部分老旧芯片在设计时对电磁兼容性考虑不足,易受外界干扰。整改过程中,可评估并选用具备更高抗扰度的新型芯片。例如,一些芯片采用了先进的工艺制程,内部增加了完善的静电保护电路和电源滤波模块。更换这些芯片后,设备对静电放电、电源尖峰等干扰的耐受能力增强。同时,新型芯片的工作稳定性更高,能减少因自身工作异常产生的电磁辐射,从源头改善汽车电子系统的电磁兼容性,为系统可靠运行提供有力保障。优化电源线滤波,抑制高频干扰。海南辐射抗扰度汽车电子EMC整改测试项目
改善 PCB 板材:PCB 板材的特性对汽车电子设备的 EMC 性能有不可忽视的影响。普通 PCB 板材在高频下的介电常数和损耗因子可能不利于电磁屏蔽和信号传输。整改时,可选用具有低介电常数、高玻璃化转变温度(Tg)的高性能板材。低介电常数能减少信号传输过程中的损耗和串扰,高 Tg 值使板材在汽车高温环境下保持良好的电气性能。同时,一些特殊的 PCB 板材还具有一定的电磁屏蔽性能,可降低设备内部电磁辐射泄漏。通过改善 PCB 板材,能从根本上提升汽车电子设备的电磁兼容性,使其更好地适应复杂的电磁环境。江西RE汽车电子EMC整改环节对显示器背光电路进行整改。
车载显示器的 PCB 布局对其 EMC 性能至关重要。在设计时,需将芯片、电源模块和显示驱动电路等关键组件合理摆放。把发热量大的功率芯片与对温度敏感的显示控制芯片分开,防止热干扰。同时,按照信号流向规划线路,缩短高速信号线长度,减少信号传输损耗与电磁辐射。例如,将时钟信号线路尽可能靠近接收芯片,降低其对外界的干扰。对于多层 PCB,合理分配电源层和地层,利用层间电容特性降低电源噪声。通过精心优化 PCB 布局,减少组件间的电磁耦合,为车载显示器稳定运行奠定良好基础,提升其在复杂电磁环境中的抗干扰能力。
确保布线的整齐与有序:整齐有序的布线不仅便于汽车电子系统的安装、维护,还能提升其 EMC 性能。杂乱无章的布线容易导致信号相互干扰,增加电磁辐射的复杂性。在整改过程中,要对汽车电子设备内部和整车线束进行整理。在 PCB 板上,遵循统一的布线规则,使信号线和电源线排列整齐,减少布线的交叉和重叠。对于整车线束,按照一定的规律进行捆扎和固定,确保线束在车内的走向清晰、有序。这样能有效降低布线产生的寄生电容和电感,减少信号间的串扰,提高汽车电子系统的电磁兼容性,同时也为后续的故障排查和维修提供便利。增加瞬态电压抑制器吸收高能量脉冲。
车载显示器可能集成多种传感器,如光线传感器、触摸传感器等,这些传感器电路易受外界电磁干扰,导致信号失真,影响显示器的智能调节和交互功能。在整改时,对传感器供电电路进行优化,增加滤波环节,确保传感器获得稳定、纯净的电源。例如,在电源输入端采用 LC 滤波电路,滤除电源中的杂波。对于传感器信号线,采用屏蔽线,并将屏蔽层可靠接地,防止外界电磁干扰耦合到信号线上。同时,在传感器电路中增加信号调理电路,如放大、滤波、整形等,提高传感器信号的抗干扰能力和信噪比。通过优化传感器电路,保证传感器准确、稳定地输出信号,提升车载显示器的智能化水平和稳定性。在关键信号线上增加滤波电容吸收脉冲。江西RE汽车电子EMC整改环节
在不同环境反复测试确保整改有效。海南辐射抗扰度汽车电子EMC整改测试项目
背光驱动电路为车载显示器的背光源提供能量,其工作时产生的电磁干扰可能影响显示效果。在整改中,优化背光驱动电路的拓扑结构。采用 PWM 调光方式时,合理选择 PWM 频率,避免与其他电路产生谐波干扰。同时,在驱动电路中增加滤波电感和电容,抑制电源线上的高频纹波和开关噪声。例如,在电感的选择上,选用磁导率高、饱和电流大的电感,以更好地滤除干扰信号。此外,对背光驱动芯片进行合理布局,使其与其他电路保持适当距离,减少电磁耦合。通过优化背光驱动电路,降低其产生的电磁干扰,提高车载显示器的显示质量和稳定性。海南辐射抗扰度汽车电子EMC整改测试项目