传统的自激振荡磁通门电路测量直流是通过测量采样电阻上的电压信号进行信号 采集, 其中有用信号为采样电阻上电压信号的平均值, 实际电路在测量直流时通过低通 滤波器 LPF 即可完成平均值电压信号解调。然而当测量交直流信号时, 由于一次侧电流 中有交流信号, 其在激磁绕组上产生的感应电流信号势必会影响铁芯激磁过程, 此时铁 芯的激磁过程变得更为复杂, 非线性特征更为明显, 使激磁电流中产生大量高频的无用 谐波, 而低通滤波器 LPF 虽然结构简单, 成本低,但是其滤波效果有限, 导致高频谐波 滤波后仍有残留, 其伴随有用信号进入误差控制模块,将影响终测量结果的准确性。 因此,本文设计的新型交直流电流传感器,通过低通滤波器 LPF 配合高通滤波器 HPF 对取自采样电阻 RS1 上的电压信号进一步处理,有效滤除其中的无用高频谐波信号,以 提高零磁通交直流检测器测量精度。激磁电压频率大于一次交流频率,因此可以将一次交流在每个极短的激磁电压周期内,看作缓慢变化的直流信号。襄阳循环测试电流传感器出厂价
电流传感器在新能源汽车中的应用确实非常重要,它们帮助监测和管理多个系统,以确保车辆的安全和高效运行。以下是关于电流传感器在新能源汽车中应用的更多细节: 电池管理系统(BMS):在新能源汽车中,电池的充电和放电过程都涉及到大电流的流动。电流传感器可以测量并反馈这些电流的变化,帮助BMS更精确地控制电池的充放电过程。此外,通过监测电流变化,BMS还可以判断电池的健康状态,预测电池的续航里程,并防止电池过充或过放。 电动机控制系统:在新能源汽车的电动机控制系统中,电流传感器的主要作用是测量电动机的工作电流。这有助于控制系统根据实时电流变化调整电动机的运行状态,实现更精确的速度和转矩控制。此外,通过监测电流变化,可以及时发现电动机的故障或过载情况,并采取相应的保护措施。襄阳循环测试电流传感器出厂价在科学研究领域,电流测量对于探索物质的电子行为、研究化学反应和生物过程等方面具有重要意义。
由自激振荡磁通门传感器交直流适应性分析可知,设计性能优异的自激振荡磁通门传感器,在激磁频率方面有所要求,本节将对铁磁材料参数及各个电路参数设计进行探讨。作为电流传感器,本节主要关注其检测带宽、量程、线性度、灵敏度及稳定度五个方面的特性并对其进行探究。(1)检测带宽WIP根据自激振荡磁通门传感器数学模型分析,其检测交流频率受到激磁电压频率fex限制,自激振荡磁通门传感器检测带宽WIP<fex/2。理论上激磁电压频率越大,检测带宽越大,对低频信号测量越准确。
随着智能电网的快速建设,交直流混合配电网的不断发展及配电网一体化配电成套设备的不断升级,交流电网中出现了直流分量。而传统电能计量设备,如电磁式互感器及直流电流互感器均无法完成交直流电流同时测量,因此无锡纳吉伏公司研发的低成本、结构简单的高精度交直流电流传感器具有重要意义。基于传统单铁芯自激振荡磁通门传感器起振原理的分析,建立了自激振荡磁通门传感器数学模型,同时对其交直流电流测量的适应性进行研究,获取其关键特性与设计参数之间的定量关系。功率分析仪是一种用于测量和分析电路的功率因数、效率、能耗等参数的仪器。
假设初始状态输出电压 VO 在 t=0 时刻 VO=VOH 。根据电阻分压关系可得电路的正反 馈系数 ρ=R1/(R1+R2) ,且运放同相端电压 V+=ρVOH 。此时运放反相端电压 V-=V+=ρVOH, 在 0~t1 时刻,对非线性电感 L 进行正向充电,充电电流大小受到电阻分压及采样电阻 RS 限制,充电电流从 0 开始增大,最大值为 Im=ρVOH/RS。在 0~t1 期间,铁芯 C1 工作点 始终在线性区 A,线性区激磁感抗 ZL 较大, 激磁电流 iex 缓慢增长到正向激磁电流阈值 Ith ,此时铁芯 C1 工作点开始进入正向饱和区 B。传统磁通门电流传感器常用偶次谐波检测法来检测被测电流值。厦门霍尔电流传感器发展现状
纳吉伏研发的磁通门电流传感器具有高灵敏度、低噪声、宽频响等优点。襄阳循环测试电流传感器出厂价
近年来,随着精密电子电路的发展,在微弱电流测量领域,自激振荡磁通门技术得到了广泛应用,不同于传统磁调制器式磁通门传感器,其电路结构简单,不需外加激磁电源,供电部分直接取自电子电路。其灵敏度不受自激振荡频率限制,自身线性度可通过优化铁磁参数提高,然后结合传统电流比较仪结构,成为本文交直流电流精密测量的新方案。无锡纳吉伏公司基于高精度交直流电流测量方法的适应性及自激振荡磁通门技术理论研究,提出新型交直流电流检测方法,主要完成交直流电流的高精度测量方法研究及装置研制,致力于解决一二次融合背景下交直流电流计量失准的问题,同时通过设计合适铁磁参数及相关电路达到高精度交直流电流测量要求,为抗直流电流互感器及交直流电流传感器的溯源提供一种新思路。襄阳循环测试电流传感器出厂价