电驱动系统主要由驱动电机总成、电机控制器总成和传动总成组成。驱动电机的主要功能是为新能源汽车提供动力,将电能转化为旋转的机械能,主要构成包括定子、转子、结构组件和壳体;电机控制器总成的作用是基于功率半导体的硬件及软件设计,对电机的工作状态进行实时控制,使其按照需要的方向、转速、转矩、响应时间工作,主要由功率组件、控制软件和传感器组成;传动总成的作用是将驱动电机的转速降低、转矩升高,以保证驱动电机的转矩、转速满足车辆需求,主要由减速器、齿轮组、离合器和半轴组成。在对电机的工作状态进行实时控制中离不开电流的实时数据,这个需要电流传感器进行采样,来实现闭环控制。本文来简述一下电流传感器的应用情况。在逆变器中UVW三相输出端,布置了一组电流传感器,一般情况UVW三相分别设计一个电流传感器来检测,也就是有三个电流传感器。也有些逆变器中电流传感器中设计了两个电流传感器,第三相通过软件算法来实现,在特斯拉的电驱动中应用了两个电流传感器,在Model S和Model 3均是这种设计方案。新能源车的电流传感器,在电池管理系统以及电机驱动控制系统中发挥着重要作用。苏州国产替代电流传感器联系方式
磁场传感器是可以将各种磁场及其变化的量转变成电信号输出的装置。自然界和人类社会生活的许多地方都存在磁场或与磁场相关的信息。利用人工设置的长时间磁体产生的磁场, 可作为许多种信息的载体。因此,探测、采集、存储、转换、复现和监控各种磁场和磁场中承载的各种信息的任务,自然就落在磁场传感器身上。在当今的信息社会中,磁场传感器已成为信息技术和信息产业中不可缺少的基础元件。目前,人们已研制出利用各种物理、化学和生物效应的磁场传感器,并已在科研、生产和社会生活的各个方面得到非常多的应用,承担起探究种种信息的任务。成都莱姆电流传感器案例电流传感器探头的参数不对称会增大探头的噪声、降低探头的稳定性和灵敏度。
光纤电流传感器的特点如下: 容易安装,不用断开导线,只需将细长、柔软的绝缘光纤卷绕在导体上就可检测电流,能实现整个传感装置的小型化和轻量化。 无电磁噪音的干扰,近年的计测控制系统中,一般将传感器的输出连接于半导体的电子回路,传感装置本身全部由光学器件构成,故具有抗电磁干扰(EMI)特性。 计测范围广,没有铁心磁饱和的制约,同时法拉第效应的响应速度快,具有从低频到高频、到大电流的广阔测量范围。 光纤电流传感器的缺点有: 光纤电流传感器容易受到温度、压力、电磁场等环境的影响,导致测量的精度和稳定性降低。 光纤电流传感器的制造和调试过程较为复杂,成本较高。 光纤电流传感器在使用过程中需要定期进行维护和校准,以保证测量结果的准确性和稳定性。
双向饱和式磁通门(Bidirectional Saturation Fluxgate)原理是利用记录激励电流使磁芯到达磁感应强度为零时的电流值作为传感器输出信号。由于磁芯的磁导率远远高于空气磁导率,穿过磁芯中心的初级线圈中流过的初级电流产生的磁场会聚集到磁芯中,因此会使磁芯达到饱和状态。次级线圈M匝围绕在环形磁芯上,由一个全桥逆变电路产生的次级电流Is产生的次级磁场强度Hs与初级磁场强度Hp共同决定。双向饱和磁通门是一种特殊的磁性器件,其中主要的结构采用坡莫合金或非晶材料制作,具有双向磁特性。这种磁通门具有两个线圈,当两个线圈分别加上正弦波形的电压时,将产生正弦波形的感应电压。然而,当电压过零点时,由于磁通门具有双向磁特性,因此其中一个线圈的磁性将会反转,从而使得该线圈的感应电压过零点对称轴发生偏移,产生一个非正弦波形电压。 双向饱和磁通门具有许多优点,如响应速度快、线性度好、抗干扰能力强、工作频率高等,因此在许多领域中得到了非常多的应用,例如电力系统的无功补偿、电力系统的谐波治理、电机控制、大功率电磁设备保护等。在工业应用领域,磁通门电流传感器的应用范围相当广,可以测量交直流电流、脉冲电流等复杂的信。
光纤电流传感器是一种新型的电流传感器,它以光纤为传输介质,基于法拉第磁光效应来完成对电流的感应。法拉第效应指的是线偏振光传播过程中,若加一与其传播方向平行的磁场,则光的振动方向将会发生偏转,且其偏转的角度受磁场强度和光穿介质长度成正比。基于这种原理形成的光纤电流传感器具有易安装、抗干扰性强、传输损耗小等特点,正逐步得到更广泛的应用。在光纤电流传感器中,被测电流的导线周围产生磁场,该磁场使环绕在光纤上的磁光晶体发生法拉第效应,即由于磁场变化而引起磁光晶体透过率发生变化,透过率的变化又直接反映到干涉仪的输出电压上,进一步反映出被测电流的变化。光纤电流传感器精度较低,适合特别大的电流测量的场景。电流传感器的探头采用变压器式的结构,在交变电流的周期性激励下,将磁场信号转变成电信号。珠海智能电流传感器
自研屏蔽式磁探头设计,提升了复杂电磁环境下的抗干扰能力;苏州国产替代电流传感器联系方式
传统磁通门电流传感器常用偶次谐波检测法来检测被测电流值。具体的数学模型以及测量均通过在环形磁芯上环绕激磁绕组和感应绕组来实现。偶次谐波检测法是磁通门传感器检测方法中非常直白,非常简单也是较为原始的测量方法,这一方法原理简单,易于理解。但是由于在提取偶次谐波过程中需要进行选频放大、相敏整流以及积分环节,检测电路复杂,精度较低,温漂较大。对于工业应用来说,偶次谐波解调电路具有复杂性,同时受到磁材料的工业性能限制,使用这种传感器费用较高。因此为改善磁通门技术的现状,吉林大学提出了时间差型磁通门,该方法有可能解决现有磁通门分辨力、测量精度难以继续提高的问题,是磁通门研究中一个值得重视的方向;Velasco-Quesada等提出了零磁通反馈式磁通门,使磁芯工作在零磁通状态下,有效减小磁滞对测量的影响;Takahiro Kudo等给出了一种通过测量输出信号峰值位置变化的方法得到被测电流的。苏州国产替代电流传感器联系方式