企业商机
超疏水防覆冰基本参数
  • 品牌
  • 维晶新材料
  • 型号
  • XN-204B
  • 类型
  • 高分子防水涂料
  • 液态类型
  • 溶剂型
  • 成膜物性质
  • 有机无机复合
  • 施工方法
  • 喷,刷,辊,淋
  • 固体含量
  • 23
  • 每公斤涂刷面积(两遍)
  • 10
  • 稀释剂
  • 溶剂型
  • 表干时间
  • 15
  • 干燥时间
  • 24H
  • 适用范围
  • 防覆冰 超疏水防雨衰效应
  • 包装规格
  • 1
  • 厂家
  • 维晶新材料
  • 储存期
  • 12个月
  • 漆膜颜色
  • 乳白
  • 疏水角度
  • 165°
  • 疏油角度
  • 140°
  • 滑动角度
  • 使用寿命
  • 3年
超疏水防覆冰企业商机

    张薇,刘长志,范书群北京宇航系统工程研究所,北京收稿日期:2020年1月21日;录用日期:2020年2月5日;发布日期:2020年2月12日摘要以CZ-5、CZ-7为**的我国新一代低温液体运载火箭,对箭体结构防水、防结冰功能提出了更高要求。通过介绍超疏水现象的原理及应用背景,简述我国运载火箭箭体结构防水、防结冰设计现状,并通过试验研究超疏水涂层对于运载火箭结构的防水、防结冰应用效果及环境适应性,验证了涂层对箭体表面小缝隙具有良好的防水效果,对结冰情况有一定的改善,为研制轻质、高效、多功能的运载火箭箭体结构提出了新的思路。关键词箭体结构,防水,防结冰,超疏水涂层1.引言运载火箭遇水受潮,可能引起电路短路漏电,致使电气系统工作异常,如处理不当,可能导致发射任务无法正常执行,甚至影响成败。我国长征系列运载火箭,箭体结构大多不具备防水功能,或*靠在主要缝隙处粘贴透明胶带,应对发射前数十分钟内可能遇到的短时间雨雪天气。以CZ-5、CZ-7为**的新一代运载火箭,采用液氢、液氧等低温液体推进剂,带来环保、无毒无污染好处的同时,也对箭体结构自身的防水、防结冰能力提出了更高要求。低温推进剂使得箭体表面大部分区域温度很低,加注推进剂时。纳米涂层的主要是由氟素化合物制成的溶液。江西大理石超疏水防覆冰功效

    《高电压技术》2019年01期收藏|投稿|手机打开手机客户端打开本文风机叶片运用超疏水涂层防覆冰的性能衰减蒋兴良周洪宇何凯杨忠毅胡玉耀【摘要】:覆冰已经严重威胁到风电的发展,国内外学者针对超疏水涂层对风机叶片覆冰的影响进行了大量的研究,但对风机叶片运用超疏水涂层防覆冰的性能衰减研究较为缺乏。在人工气候室内对涂覆3种不同超疏水涂层的风机叶片试品进行防覆冰性能衰减试验。试验中对风机叶片超疏水涂层的冰层粘结强度、接触角、接触角滞后进行测量;并从水滴湿润模型出发,分析了覆冰/脱冰次数对冰层粘结强度、接触角、接触角滞后的影响。研究结果表明:随着覆冰/脱冰循环的进行,风机叶片涂层表面的冰层粘结强度、接触角滞后逐渐增大,接触角逐渐减小,**终其冰层粘结强度与疏水性涂层相当;冰层粘结强度、接触角、接触角滞后的变化率呈现出先增大,后减小的趋势;不同类型的超疏水涂料防覆冰性能衰减存在差异。【作者单位】:重庆大学电气工程学院输配电装备及系统安全与新技术国家重点试验室【基金】:973计划前期研究专项(2014CB260401)国家自然科学基金创新研究群体项目(51321063)~~【分类号】:TM315下载全文更多同类文献PDF全文下载CAJ全文下载。湖南眼镜超疏水防覆冰推荐厂家接触角大于90°时,就可以称之为疏水,如果是能达到150°以上,那就是十分厉害的超疏水了。

    对降低运输能耗、提高输送效率有很大帮助。有试验表明,在铝合金平板表面涂覆一种低表面能的涂层,可减小阻力18%~30%[6],这实际上就是超疏水材料的减阻效果。赵坤等[7]通过试验,验证了经过超疏水材料涂覆的铝合金基体,表面具有良好的超疏水性能,而运载火箭箭体结构的主要材料正是铝合金。3.我国运载火箭箭体结构防水、防结冰设计现状根据结构形式及功能的不同,运载火箭箭体大结构主要分为贮箱和壳段。我国现役液体运载火箭,壳段大多为组合式结构,每个壳段由数百种零组件通过铆接、螺接等机械连接方式装配而成,因此,在零组件搭接、对接处,以及铆钉、螺栓附近,存在很多细小的缝隙。同时,根据实际需求,壳段和贮箱短壳侧壁上设置有大小不一的各种开口,开口处一般用盖板或小罩子封堵,用于防尘和防风,盖板或小罩子的边缘与壳段装配处,以及用于装配的螺栓、快速锁等连接件附近,均会存在不同程度的缝隙。此外,不同壳段之间、壳段与贮箱之间的对接面,以及级间分离、整流罩分离面处的结构,均存在缝隙。以上大小不等的缝隙,***分布在箭体结构表面,均存在渗漏水的风险。针对这些缝隙,我国新一代低温运载火箭,主要采取了封堵的方式进行防水处理。

    对于铆钉孔、抗剪螺栓孔等极小缝隙,除火箭原有表面喷漆外,不采取专门防水措施;对于搭接缝、对接缝等较小缝隙,采取在缝隙边缘涂抹防水胶的措施;对于舱口盖等较大缝隙处,采取粘贴防水密封条和涂防水胶结合的方式,并选用防水锁等**连接件。由于箭体结构表面缝隙数量、种类繁多,这些用于应对防水问题的措施,延长了结构生产周期,尤其是一些有特殊功能的结构,需要在临近发射时进行防水处理,使原本就很紧张的射前工作更加繁杂,而且容易出现疏漏。对于箭体结构的防结冰,目前未采取专门应对措施,如出现影响火箭发射任务的结冰问题,主要靠手动铲除的方式处理。简言之,我国运载火箭箭体结构防水、防结冰设计现状详见表1。、防结冰设计现状4.超疏水涂层箭体结构防水、防结冰试验.超疏水试片淋水、结冰试验为验证某种具有超疏水特性的涂层材料对金属表面疏水性能的影响,选用航天运载器结构常用的mm厚2A12铝合金板,进行喷水和结冰测试。试片表面分别为以下三种状态:不喷超疏水涂层、不打磨喷超疏水涂层、打磨后喷超疏水涂层。打磨时,采用150目的普通水磨砂纸手工打磨试片表面,打磨至有明显粗糙感;喷涂的超疏水涂层选用市购Ultra-EverDry。材料表面的自由能决定了这个材料是亲水还是疏水,自由的能越低,疏水性越强。

    .超疏水材料的应用现状超疏水材料主要利用其自清洁、耐玷污等生物仿生方面的特性进行开发和应用,在诸如**、农业微流体毛细自灌溉、管道无损运输、房屋建筑以及各种露天环境下工作的设备的防水和防冰等方面有广阔的前景。1)防结冰。由于水滴在超疏水表面很难停留,且接触角很大,水滴与表面接触面积较小,热传递效率低,因此超疏水表面具有较好的抗结冰性能。杨军等[3]对超疏水表面技术在发动机防冰部件中的应用进行了研究,认为该技术不*可以实现防冰,超疏水表面的纳米结构还能通过其自清洁功能减缓腐蚀,从而提高发动机的可靠性和使用寿命。2)防污、防腐蚀。利用超疏水材料独特的疏水性,研制无色透明、无毒、无污染的涂料,将其作为防护液喷涂在建筑物内外墙、玻璃、鞋子、衣物等表面,水滴移动更容易,表面的自清洁能力增强,不易氧化、腐蚀[4]。张德建等[5]通过在铝表面制备具有微、纳米结构的粗糙薄膜,实现了150˚海水接触角,并通过试验验证了超疏水的表面相比普通铝材能达到,能有效材料的提高抗海水腐蚀性能。3)减阻。在管道内壁、船舶外壁等表面制备超疏水薄膜,不*可提高防腐能力,更能有效减小管道气体、液体运输以及船舶行进阻力。疏水材料是怎么来呢?广西自洁超疏水防覆冰出厂价

疏水材料的是非常实用的。江西大理石超疏水防覆冰功效

    i)所示的硅烷、引发剂、溶剂加入到反应容器中,在保护气氛下加热至80°c,反应10h而成。含氟丙烯酸酯类单体为丙烯酸三氟乙酯。所述功能单体为丙烯酰胺。引发剂为叔丁基过氧化氢。将该超疏水涂料涂敷于金属表面,经干燥固化即可形成超疏水膜。实施例2一种超疏水涂料包括含氟丙烯酸脂改性的硅烷组分a、固化剂、丙烯酸乳液,其中,涂料中的组分a、固化剂、丙烯酸乳液的质量比例为30:20:30。组分a由含氟丙烯酸酯类单体与硅烷在引发剂存在的情况下反应制得,所述硅烷的结构式如式(i):x3si-(ch2)n-(ch=ch)-(ch2)m-nh-c(cooh)-ch2-sh(i)其中,x是氯,m为2,n为4。组分a的具体制备步骤为:将含氟丙烯酸酯类单体、功能单体、式(i)所示的硅烷、引发剂、溶剂加入到反应容器中,在保护气氛下加热至70°c,反应16h而成。含氟丙烯酸酯类单体为甲基丙烯酸六氟丁酯。所述功能单体为甲基丙烯酸-2-羟基丙酯。引发剂为叔丁基过氧化氢。将该超疏水涂料涂敷于木材表面,经干燥固化即可形成超疏水膜。实施例3一种超疏水涂料包括含氟丙烯酸脂改性的硅烷组分a、固化剂、丙烯酸乳液,其中,涂料中的组分a、固化剂、丙烯酸乳液的质量比例为25:20:50。江西大理石超疏水防覆冰功效

深圳维晶高新材料科技有限公司属于化工的高新企业,技术力量雄厚。公司致力于为客户提供安全、质量有保证的良好产品及服务,是一家有限责任公司企业。公司始终坚持客户需求优先的原则,致力于提供高质量的超疏水防雨衰涂层,电子产品纳米防水涂层,超亲水防雾涂层,防覆冰纳米涂层。维晶新材料以创造高品质产品及服务的理念,打造高指标的服务,引导行业的发展。

超疏水防覆冰产品展示
  • 江西大理石超疏水防覆冰功效,超疏水防覆冰
  • 江西大理石超疏水防覆冰功效,超疏水防覆冰
  • 江西大理石超疏水防覆冰功效,超疏水防覆冰
与超疏水防覆冰相关的问答
与超疏水防覆冰相关的标签
信息来源于互联网 本站不为信息真实性负责