Ca2+是重要的第二信使,对于调节细胞的生理反应具有重要的作用,开发和利用双光子荧光显微成像技术对Ca2+荧光信号进行观测,可以从某些方面对有机体或细胞的变化机制进行分析,具有重要的意义。利用双光子荧光显微成像技术可以观察细胞内用荧光探针标记的Ca2*的时间和空间的荧光图像的变化,还可以观察细胞某一层面或局部的(Ca2+)荧光图像和变化。通过对单细胞的研究发现,Ca2+不仅在细胞局部区域间的分布是不均匀的,而且细胞内各局部区域的不同深度或层次间也存在不同程度的Ca2+梯差即所谓的空间Ca2梯差。多光子显微镜的发展现状及未来发展趋势。离体多光子显微镜准确定位

比较两表格中的相关参数可以看出,基于分子光学标记的成像技术已经在生物活检和基因表达规律方面展示了较大的优势。例如,正电子发射断层成像(PET)可实现对分子代谢的成像,空间分辨率∶1-2mm,时间分辨率;分钟量级。与PET比较,光学成像的应用场合更广(可测量更多的参数,请参见表1-1),且具有更高的时间分辨率(秒级),空间分辨率可达到微米。因此,二者相比,虽然光学成像在测量深度方面不及PET,但在测量参数种类与时空分辨率方面有一定优势。对于小动物(如小白鼠)研究来说,光学成像技术可以实现小动物整体成像和在体基因表达成像。例如,初步研究表明,荧光介导层析成像可达到近10cm的测量深度;基于多光子激发的显微成像技术可望实现小鼠体内基因表达的实时在体成像。美国离体多光子显微镜Ultima 2P Plus带宽足以覆盖钛蓝宝石激光器的可调谐范围和用于多光子显微镜的许多其它激光器的典型中心频率。

多光子激发在紫外成像的优势在可见光脉冲中能得到紫外衍射的显微观察像。即使不使用紫外域光源、光学元件用可见光源、光学元件就能得到紫外光激励的高空间分辨率图像。多光子在生物成像中的优势在生物显微镜观察方面,较早考虑的是不损坏生物本身的活性状态,维持水分、离子浓度、氧和养分的流通。在光观察场合,无论是热还是光子能量方面都必须停留在细胞不受损伤的照射量、光能量内。多光子显微镜则能够满足此,而且还具有很多优点。如三维分辨率、深度侵入、在散射效率、背景光、信噪比、控制等方面,均有以往激光显微镜不具备,或具有无法比拟的超越特性。
单光子激发荧光和双光子激发荧光,是从荧光产生的机理上来区分的。而共焦则是荧光显微镜的一种结构,其目的是为了,通过共焦结构,提高整个荧光显微镜的空间分辨率。所以共焦荧光显微镜可以根据激发光源的不同,实现单光子共焦荧光成像或者双光子共焦荧光成像。往往一个普通的双光子荧光显微镜(没有共焦结构)其空间分辨率也可以达到单光子共焦荧光显微镜的水平。这样就可以简化整个系统,相对来说,就提高了激发光源的利用率,以及荧光的探测效率,这个也是我们提倡双光子荧光成像的原因之一。双光子荧光共焦显微镜由于双光子效应和共焦结构,分辨率则会更高,而我们通常说的共焦显微镜都是指单光子激发荧光的。多光子激光扫描显微镜是建立在激光扫描显微镜技术基础上的实验方法,三维观察上提供更的光学切片能力。

快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。远程聚焦也是一种实现3D成像的手段,如图2所示。在LSU模块中,扫描振镜进行横向扫描,ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统依赖于远程聚焦、SLM和可调电动透镜。多光子显微镜的大多数补偿器都采用棱镜。Ultima Investigator多光子显微镜作用
多光子显微镜销售渠道分析及建议。离体多光子显微镜准确定位
多光子显微镜成像深度深、对比度高,在生物成像中具有重要意义,但通常需要较高的功率。结合时间传播的超短脉冲可以实现超快的扫描速度和较深的成像深度,但近红外波段的光本身会导致分辨率较低。基于多光子上转换材料和时间编码结构光显微镜的高速超分辨成像系统(MUTE-SIM)是由清华大学教授和北京大学彭研究员合作开发的。可实现50MHz的超高扫描速度,突破衍射极限,实现超分辨率成像。与普通荧光显微镜相比,该显微镜经过改进,只需要较低的激发功率。这种超快、低功耗、多光子超分辨率技术在高分辨率生物深层组织成像中具有长远的应用前景。离体多光子显微镜准确定位