多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

随着现代分子生物学技术的快速发展和科学技术的进步,特别是后基因组时代的到来,人们已经能够根据需要建立各种细胞模型,这为在体内研究基因表达、分子间相互作用、细胞增殖、细胞信号转导、诱导分化、细胞凋亡和新生血管生成提供了良好的生物学条件。然而,尽管利用现有的分子生物学方法对基因表达与蛋白质的相互作用进行了深入细致的研究,但仍然无法实现对蛋白质和基因活性的实时动态监测。在细胞的生理过程中,基因尤其是蛋白质的表达、修饰和相互作用往往是可逆的、动态变化的。目前,分子生物学方法无法捕捉到蛋白质和基因的这些变化,但获得这些信息对于研究基因表达与蛋白质的相互作用非常重要。因此,有必要发展一种动态、实时、连续监测蛋白质和基因活性的方法。高速扫描,高分辨率,多光子显微镜助力科研进步。Ultima 2P Plus多光子显微镜代理

Ultima 2P Plus多光子显微镜代理,多光子显微镜

某种物质能产生荧光,首要条件是分子必须具有吸收的结构,即生色团(分子中具有吸收特征频率的光能的基团)。其次,该物质必须具有一定的量子产率和适宣的环境。我们把分子中发射荧光的基团称为荧光团。荧光团一定是生色团,但生色团不一定是荧光团。因为,如果生色团的量子产率等于零,就不能发射出荧光,处于激发态的分子,可以由许多方式(如热,碰撞)把能量释放出来,发射荧光只是其中的一种方式。此外,一种物质吸收光的能力及量子产率又与物质所处的环境密切相关。Ultima 2P Plus多光子显微镜代理实现细胞内分子级观测,多光子显微镜开启生命科学新篇章。

Ultima 2P Plus多光子显微镜代理,多光子显微镜

与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整大脑深处神经的了解与认识。2019年,JeromeLecoq等人从大脑深处的神经元成像、大量神经元成像、高速神经元成像这三个方面论述了相关的MPM技术。想要将神经元活动与复杂行为联系起来,通常需要对大脑皮质深层的神经元进行成像,这就要求MPM具有深层成像的能力。激发和发射光会被生物组织高度散射和吸收是限制MPM成像深度的主要因素,虽然可以通过增加激光强度来解决散射问题,但这会带来其他问题,例如烧坏样品、离焦和近表面荧光激发。增加MPM成像深度比较好的方法是用更长的波长作为激发光。

多光子显微镜对成像深度的改善利用红光或红外光激发,光散射小(小粒子的散射与波长的四次方的成反比)。不需要***,能更多收集来自成像截面的散射光子。***不能区分由离焦区域或焦点区发射出的散射光子,多光子在深层成像信噪比好。单光子激发所用的紫外或可见光在光束到达焦平面之前易被样品吸收而衰减,不易对深层激发。多光子荧光成像的特点。深度成像∶与共聚焦相比能更好地对厚散射物质成像。信噪比∶多光子吸收采用的波长是单光子吸收的2倍以上,所以显微试样中的瑞利散射更小,荧光测定的信噪比更高。观察活细胞∶离子测量(i.e.Ca2+),GFP,发育生物学等—减少了光毒性和光漂白,能对细胞长时间观察。光子显微成像技术不是什么新技术,早在20多年前就有了,目前已经在生命科学和材料科学中广泛应用。

Ultima 2P Plus多光子显微镜代理,多光子显微镜

以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内能吸收到一个光子而从金属表面逸出。强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在短时间吸收多个光子成为可能,从而形成多光子电效应,这已被实验证实。为什么一般讨论的光电效应都是指单光子光电效应呢?这是因为,在使用普通光源的情况下,电子吸收两个以上光子能量的概率是非常非常小的,几乎为零。事实上,爱因斯坦本人就考虑过在强光下发生光电效应的可能性问题。对此,他有如下的论述:光电效应中的一个电子吸收两个光子的几率不会大于下雨天两个雨滴同事打在一个蚂蚁上的几率。因此,多光子光电效应在实验上的研究成为可能,是二十世纪六十年代激光乃至强激光出现以后的事情。有了激光,对于双光子光电效应,在实验上和理论上均取得了许多成果。利用强激光,人们不仅观察到双光子和三光子的光电效应,甚至观察到金靶材吸收几十个等效光子实验现象。利用多光子显微镜的多点光ji活能力,我们可以研究多个神经细胞之间的连接和控制。美国啮齿类多光子显微镜三维分辨率

多光子显微镜销售/营销策略建议。Ultima 2P Plus多光子显微镜代理

1,光源、光路高度整合通过精密的设计,将飞秒激光器、扫描振镜、PMT、滤光片组,甚至是单光子荧光光路全套整合在一个不大的扫描头内,无论扫描头如何移动,扫描头内的光路都可以保持稳定不变,从而实现了超稳定、免维护的特点。2,配合多维度、高精度机械控制系统。扫描头直接架设在一个多维运动的机械装置上,可沿任意方向和角度移动扫描头,方便对动物样本进行多方位的扫描观察。而这在常规方案的多光子显微镜上有很大的实现难度,不但需要多个关节组合的光路导向机构,并且在这些关节旋转的时候,都冒着极大的光路偏移的风险,以至于在使用一段时间后都需要对光路进行再次校准,而这样的问题在我司上则完全不会发生。3.一机多能。Ultima 2P Plus多光子显微镜代理

与多光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责