双光子荧光显微成像主要有以下优点∶a.光损伤小∶双光子荧光显微镜使用可见光或近红外光作为激发光,对细胞和组织的光损伤很小,适合于长时间的研究;b.穿透能力强∶相对于紫外光,可见光或近红外光具有很强的穿透性,可以对生物样品进行深层次的研究;c.高分辨率∶由于双光子吸收截面很小P,只有在焦平面很小的区域内可以激发出荧光,双光子吸收局限于焦点处的体积约为λ范围内;d.漂白区域很小,焦点以外不发生漂白现象。e.荧光收集率高。与共聚焦成像相比,双光子成像不需要光学滤波器,提高了荧光收集率。收集效率提高直接导致图像对比度提高。f.对探测光路的要求低。由于激发光与发射荧光的波长差值加大以及自发的三维滤波效果,多光子显微镜对光路收集系统的要求比单光子共焦显微镜低得多,光学系统相对简单。g.适合多标记复合测量。许多染料荧光探针的多光子激发光谱要比单光子激发谱宽阔,这样,可以利用单一波长的激发光同时激发多种染料,从而得到同一生命现象中的不同信息,便于相互对照、补充。多光子显微镜,为材料科学研究和工业应用提供全新视角。Ultima 2P Plus多光子显微镜原理

2020年,TonmoyChakraborty等人提出了加速2PM轴向扫描速度的方法[2]。在光学显微镜中,物镜或样品缓慢的轴向扫描速度限制了体成像的速度。近年来,通过使用远程聚焦技术或电调谐透镜(ETL)已经实现了快速轴向扫描。但远程对焦时对反射镜的机械驱动会限制轴向扫描速度,ETL会引入球差和高阶像差,无法进行高分辨率成像。为了克服这些限制,该小组引入了一种新的光学设计,可以将横向扫描转换为无球面像差的轴向扫描,以实现高分辨率成像。有两种方法可以实现这种设计。***个可以执行离散的轴向扫描,另一个可以执行连续的轴向扫描。如图3a所示,特定装置由两个垂直臂组成,每个臂具有4F望远镜和物镜。远程聚焦臂由振镜扫描镜(GSM)和空气物镜(OBJ1)组成,另一个臂(称为照明臂)由浸没物镜(OBJ2)组成。两个臂对齐,使得GSM与两个物镜的后焦平面共轭。准直后的激光束经偏振分束器反射进入远程聚焦臂,由GSM进行扫描,使OBJ1产生的激光焦点可以进行水平扫描。全自动多光子显微镜供应商从产品类型及技术方面来看,正置显微镜占据绝大多数市场。

因斯蔻浦(上海)生物科技有限公司双光子显微镜的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收2个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。这种激光器发出的激光具有很高的峰值能量和很低的平均能量,其脉冲宽度只有100飞秒,而其周期可以达到80至100兆赫兹。在使用高数值孔径的物镜将脉冲激光的光子聚焦时,物镜的焦点处的光子密度是比较高的,双光子激发只发生在物镜的焦点上,所以双光子显微镜不需要共聚焦***,提高了荧光检测效率。
单光子激发荧光和双光子激发荧光,是从荧光产生的机理上来区分的。而共焦则是荧光显微镜的一种结构,其目的是为了,通过共焦结构,提高整个荧光显微镜的空间分辨率。所以共焦荧光显微镜可以根据激发光源的不同,实现单光子共焦荧光成像或者双光子共焦荧光成像。往往一个普通的双光子荧光显微镜(没有共焦结构)其空间分辨率也可以达到单光子共焦荧光显微镜的水平。这样就可以简化整个系统,相对来说,就提高了激发光源的利用率,以及荧光的探测效率,这个也是我们提倡双光子荧光成像的原因之一。双光子荧光共焦显微镜由于双光子效应和共焦结构,分辨率则会更高,而我们通常说的共焦显微镜都是指单光子激发荧光的。多光子显微镜作为一种研究微观结构和功能的技术,在众多领域得到了普遍的应用。

快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。远程聚焦也是一种实现3D成像的手段,如图2所示。在LSU模块中,扫描振镜进行横向扫描,ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统依赖于远程聚焦、SLM和可调电动透镜。多光子激光扫描显微镜是建立在激光扫描显微镜技术基础上的实验方法,三维观察上提供更的光学切片能力。灵长类多光子显微镜焦点激发
多光子显微镜的发展历史充满了贡献、开发、进步和数个世纪以来多个来源和地点的改进。Ultima 2P Plus多光子显微镜原理
快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。远程聚焦也是一种实现3D成像的手段,如图2所示。在LSU模块中,扫描振镜进行横向扫描,ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统需要依赖于远程聚焦、SLM和可调电动透镜。Ultima 2P Plus多光子显微镜原理